{"title":"Sn(IV)porphyrin-Anchored TiO2 Nanoparticles via Axial-Ligand Coordination for Enhancement of Visible Light-Activated Photocatalytic Degradation","authors":"N. Shee, Hee-Joon Kim","doi":"10.3390/inorganics11080336","DOIUrl":null,"url":null,"abstract":"A visible-light-active photocatalyst, SnP/AA@TiO2, was fabricated by utilizing the coordination chemistry between the axial hydroxo-ligand in the (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)Sn(IV) complex (SnP) and adipic acid (AA) on the surface of TiO2 nanoparticles. The SnP center was strongly bonded to the surface of the TiO2 nanoparticles via the adipic acid linkage in SnP/AA@TiO2, as confirmed by various instrumental techniques. SnP/AA@TiO2 exhibited remarkably enhanced photocatalytic activity toward the degradation of rhodamine B dye (RhB) in aqueous solution under visible-light irradiation. The RhB degradation efficiency of SnP/AA@TiO2 was 95% within 80 min, with a rate constant of 0.0366 min−1. The high degradation efficiency, low catalyst loading and high reusability make SnP-anchored photocatalysts more efficient than other photocatalysts, such as TiO2 and SnP@TiO2.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11080336","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 2
Abstract
A visible-light-active photocatalyst, SnP/AA@TiO2, was fabricated by utilizing the coordination chemistry between the axial hydroxo-ligand in the (trans-dihydroxo)(5,10,15,20-tetraphenylporphyrinato)Sn(IV) complex (SnP) and adipic acid (AA) on the surface of TiO2 nanoparticles. The SnP center was strongly bonded to the surface of the TiO2 nanoparticles via the adipic acid linkage in SnP/AA@TiO2, as confirmed by various instrumental techniques. SnP/AA@TiO2 exhibited remarkably enhanced photocatalytic activity toward the degradation of rhodamine B dye (RhB) in aqueous solution under visible-light irradiation. The RhB degradation efficiency of SnP/AA@TiO2 was 95% within 80 min, with a rate constant of 0.0366 min−1. The high degradation efficiency, low catalyst loading and high reusability make SnP-anchored photocatalysts more efficient than other photocatalysts, such as TiO2 and SnP@TiO2.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD