Biased halfspaces, noise sensitivity, and local Chernoff inequalities

IF 1 3区 数学 Q1 MATHEMATICS Discrete Analysis Pub Date : 2017-10-01 DOI:10.19086/DA.10234
Nathan Keller, Ohad Klein
{"title":"Biased halfspaces, noise sensitivity, and local Chernoff inequalities","authors":"Nathan Keller, Ohad Klein","doi":"10.19086/DA.10234","DOIUrl":null,"url":null,"abstract":"A halfspace is a function $f\\colon\\{-1,1\\}^n \\rightarrow \\{0,1\\}$ of the form $f(x)=\\mathbb{1}(a\\cdot x>t)$, where $\\sum_i a_i^2=1$. \nWe show that if $f$ is a halfspace with $\\mathbb{E}[f]=\\epsilon$ and $a'=\\max_i |a_i|$, then the degree-1 Fourier weight of $f$ is \n$W^1(f)=\\Theta(\\epsilon^2 \\log(1/\\epsilon))$, and the maximal influence of $f$ is $I_{\\max}(f)=\\Theta(\\epsilon \\min(1,a' \\sqrt{\\log(1/\\epsilon)}))$. \nThese results, which determine the exact asymptotic order of $W^1(f)$ and $I_{\\max}(f)$, provide sharp generalizations of theorems proved by Matulef, O'Donnell, Rubinfeld, and Servedio, and settle a conjecture posed by Kalai, Keller and Mossel. \nIn addition, we present a refinement of the definition of noise sensitivity which takes into consideration the bias of the function, and show that (like in the unbiased case) halfspaces are noise resistant, and, in the other direction, any noise resistant function is well correlated with a halfspace. \nOur main tools are 'local' forms of the classical Chernoff inequality, like the following one proved by Devroye and Lugosi (2008): \nLet $\\{ x_i \\}$ be independent random variables uniformly distributed in $\\{-1,1\\}$, and let $a_i\\in\\mathbb{R}_+$ be such that $\\sum_i a_{i}^{2}=1$. \nIf for some $t\\geq 0$ we have $\\Pr[\\sum_{i} a_i x_i > t]=\\epsilon$, then $\\Pr[\\sum_{i} a_i x_i>t+\\delta]\\leq \\frac{\\epsilon}{2}$ holds for $\\delta\\leq c/\\sqrt{\\log(1/\\epsilon)}$, where $c$ is a universal constant.","PeriodicalId":37312,"journal":{"name":"Discrete Analysis","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19086/DA.10234","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A halfspace is a function $f\colon\{-1,1\}^n \rightarrow \{0,1\}$ of the form $f(x)=\mathbb{1}(a\cdot x>t)$, where $\sum_i a_i^2=1$. We show that if $f$ is a halfspace with $\mathbb{E}[f]=\epsilon$ and $a'=\max_i |a_i|$, then the degree-1 Fourier weight of $f$ is $W^1(f)=\Theta(\epsilon^2 \log(1/\epsilon))$, and the maximal influence of $f$ is $I_{\max}(f)=\Theta(\epsilon \min(1,a' \sqrt{\log(1/\epsilon)}))$. These results, which determine the exact asymptotic order of $W^1(f)$ and $I_{\max}(f)$, provide sharp generalizations of theorems proved by Matulef, O'Donnell, Rubinfeld, and Servedio, and settle a conjecture posed by Kalai, Keller and Mossel. In addition, we present a refinement of the definition of noise sensitivity which takes into consideration the bias of the function, and show that (like in the unbiased case) halfspaces are noise resistant, and, in the other direction, any noise resistant function is well correlated with a halfspace. Our main tools are 'local' forms of the classical Chernoff inequality, like the following one proved by Devroye and Lugosi (2008): Let $\{ x_i \}$ be independent random variables uniformly distributed in $\{-1,1\}$, and let $a_i\in\mathbb{R}_+$ be such that $\sum_i a_{i}^{2}=1$. If for some $t\geq 0$ we have $\Pr[\sum_{i} a_i x_i > t]=\epsilon$, then $\Pr[\sum_{i} a_i x_i>t+\delta]\leq \frac{\epsilon}{2}$ holds for $\delta\leq c/\sqrt{\log(1/\epsilon)}$, where $c$ is a universal constant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有偏半空间、噪声敏感性和局部Chernoff不等式
半空间是形式为$f(x)=\mathbb{1}(A\cdot x>t)$的函数$f\colon\{-1,1\}^n\rightarrow\{0,1\}$,其中$\sum_ia_i^2=1$。我们证明,如果$f$是具有$\mathbb{E}[f]=\epsilon$和$a'=\max_i|a_i|$的半空间,则$f$的1阶傅立叶权重为$W^1(f)=\Theta(\epsilon^2 \log(1/\epsilon))$,并且$f$最大影响为$i_{\max}(f)=\Theta。这些结果确定了$W^1(f)$和$I_。此外,我们提出了噪声灵敏度定义的改进,该定义考虑了函数的偏差,并表明(与无偏情况一样)半空间是抗噪声的,并且在另一个方向上,任何抗噪声函数都与半空间良好相关。我们的主要工具是经典Chernoff不等式的“局部”形式,如Devroye和Lugosi(2008)证明的以下形式:设$\{x_i\}$是均匀分布在$\{-1,1\}$中的独立随机变量,并设$a_i\in\mathbb{R}_+$使得$\sum_ia_{i}^{2}=1$。如果对于一些$t\geq0$,我们有$\Pr[\sum_{i}a_i x_i>t]=\epsilon$,那么$\Pr[[sum_{i}a_ix_i>t+\delta]\leq\frac{\epsilon}{2}$对于$\delta\leq c/\sqrt{\log(1/\epsilon)}$成立,其中$c$是一个通用常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Discrete Analysis
Discrete Analysis Mathematics-Algebra and Number Theory
CiteScore
1.60
自引率
0.00%
发文量
1
审稿时长
17 weeks
期刊介绍: Discrete Analysis is a mathematical journal that aims to publish articles that are analytical in flavour but that also have an impact on the study of discrete structures. The areas covered include (all or parts of) harmonic analysis, ergodic theory, topological dynamics, growth in groups, analytic number theory, additive combinatorics, combinatorial number theory, extremal and probabilistic combinatorics, combinatorial geometry, convexity, metric geometry, and theoretical computer science. As a rough guideline, we are looking for papers that are likely to be of genuine interest to the editors of the journal.
期刊最新文献
Stronger arithmetic equivalence Random volumes in d-dimensional polytopes Joints formed by lines and a $k$-plane, and a discrete estimate of Kakeya type An efficient container lemma A characterization of polynomials whose high powers have non-negative coefficients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1