{"title":"Predicting the last zero before an exponential time of a spectrally negative Lévy process","authors":"E. Baurdoux, J. M. Pedraza","doi":"10.1017/apr.2022.47","DOIUrl":null,"url":null,"abstract":"Abstract Given a spectrally negative Lévy process, we predict, in an \n$L_1$\n sense, the last passage time of the process below zero before an independent exponential time. This optimal prediction problem generalises [2], where the infinite-horizon problem is solved. Using a similar argument as that in [24], we show that this optimal prediction problem is equivalent to solving an optimal prediction problem in a finite-horizon setting. Surprisingly (unlike the infinite-horizon problem), an optimal stopping time is based on a curve that is killed at the moment the mean of the exponential time is reached. That is, an optimal stopping time is the first time the process crosses above a non-negative, continuous, and non-increasing curve depending on time. This curve and the value function are characterised as a solution of a system of nonlinear integral equations which can be understood as a generalisation of the free boundary equations (see e.g. [21, Chapter IV.14.1]) in the presence of jumps. As an example, we numerically calculate this curve in the Brownian motion case and for a compound Poisson process with exponential-sized jumps perturbed by a Brownian motion.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2022.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Given a spectrally negative Lévy process, we predict, in an
$L_1$
sense, the last passage time of the process below zero before an independent exponential time. This optimal prediction problem generalises [2], where the infinite-horizon problem is solved. Using a similar argument as that in [24], we show that this optimal prediction problem is equivalent to solving an optimal prediction problem in a finite-horizon setting. Surprisingly (unlike the infinite-horizon problem), an optimal stopping time is based on a curve that is killed at the moment the mean of the exponential time is reached. That is, an optimal stopping time is the first time the process crosses above a non-negative, continuous, and non-increasing curve depending on time. This curve and the value function are characterised as a solution of a system of nonlinear integral equations which can be understood as a generalisation of the free boundary equations (see e.g. [21, Chapter IV.14.1]) in the presence of jumps. As an example, we numerically calculate this curve in the Brownian motion case and for a compound Poisson process with exponential-sized jumps perturbed by a Brownian motion.