{"title":"Displacement Error Characteristics of 500-hPa Cutoff Lows in Operational GFS Forecasts","authors":"Kevin M. Lupo, C. Schwartz, G. Romine","doi":"10.1175/waf-d-22-0224.1","DOIUrl":null,"url":null,"abstract":"\nCutoff lows are often associated with high-impact weather; therefore, it is critical that operational numerical weather prediction systems accurately represent the evolution of these features. However, medium-range forecasts of upper-level features using the Global Forecast System (GFS) are often subjectively characterized by excessive synoptic progressiveness, i.e., a tendency to advance troughs and cutoff lows too quickly downstream. To better understand synoptic progressiveness errors, this research quantifies seven years of 500-hPa cutoff low position errors over the globe, with the goal of objectively identifying regions where synoptic progressiveness errors are common and how frequently these errors occur. Specifically, 500-hPa features are identified and tracked in 0–240-hour 0.25° GFS forecasts during April 2015–March 2022 using an objective cutoff low and trough identification scheme and compared to corresponding 500-hPa GFS analyses. In the Northern Hemisphere, cutoff lows are generally underrepresented in forecasts compared to verifying analyses, particularly over continental midlatitude regions. Features identified in short- to long-range forecasts are generally associated with eastward zonal position errors over the conterminous United States and northern Asia, particularly during the spring and autumn. Similarly, cutoff lows over the Southern Hemisphere midlatitudes are characterized by an eastward displacement bias during all seasons.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-22-0224.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cutoff lows are often associated with high-impact weather; therefore, it is critical that operational numerical weather prediction systems accurately represent the evolution of these features. However, medium-range forecasts of upper-level features using the Global Forecast System (GFS) are often subjectively characterized by excessive synoptic progressiveness, i.e., a tendency to advance troughs and cutoff lows too quickly downstream. To better understand synoptic progressiveness errors, this research quantifies seven years of 500-hPa cutoff low position errors over the globe, with the goal of objectively identifying regions where synoptic progressiveness errors are common and how frequently these errors occur. Specifically, 500-hPa features are identified and tracked in 0–240-hour 0.25° GFS forecasts during April 2015–March 2022 using an objective cutoff low and trough identification scheme and compared to corresponding 500-hPa GFS analyses. In the Northern Hemisphere, cutoff lows are generally underrepresented in forecasts compared to verifying analyses, particularly over continental midlatitude regions. Features identified in short- to long-range forecasts are generally associated with eastward zonal position errors over the conterminous United States and northern Asia, particularly during the spring and autumn. Similarly, cutoff lows over the Southern Hemisphere midlatitudes are characterized by an eastward displacement bias during all seasons.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.