Md. Mehadi Hasan Sohag, Olivier Nicoud, Racha Amine, Abir Khalil-Mgharbel, J. Alcaraz, I. Vilgrain, Donald K. Martin
{"title":"Improved micro-impedance spectroscopy to determine cell barrier properties","authors":"Md. Mehadi Hasan Sohag, Olivier Nicoud, Racha Amine, Abir Khalil-Mgharbel, J. Alcaraz, I. Vilgrain, Donald K. Martin","doi":"10.2478/ebtj-2020-0017","DOIUrl":null,"url":null,"abstract":"Abstract The goal of this study was to determine whether the Tethapod system, which was designed to determine the impedance properties of lipid bilayers, could be used for cell culture in order to utilise micro-impedance spectroscopy to examine further biological applications. To that purpose we have used normal epithelial cells from kidney (RPTEC) and a kidney cancer cell model (786-O). We demonstrate that the Tethapod system is compatible with the culture of 10,000 cells seeded to grow on a small area gold measurement electrode for several days without affecting the cell viability. Furthermore, the range of frequencies for EIS measurements were tuned to examine easily the characteristics of the cell monolayer. We demonstrate significant differences in the paracellular resistance pathway between normal and cancer kidney epithelial cells. Thus, we conclude that this device has advantages for the study of cultured cells that include (i) the configuration of measurement and reference electrodes across a microfluidic channel, and (ii) the small surface area of 6 parallel measurement electrodes (2.1 mm2) integrated in a microfluidic system. These characteristics might improve micro-impedance spectroscopy measurement techniques to provide a simple tool for further studies in the field of the patho-physiology of biological barriers.","PeriodicalId":22379,"journal":{"name":"The EuroBiotech Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EuroBiotech Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ebtj-2020-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract The goal of this study was to determine whether the Tethapod system, which was designed to determine the impedance properties of lipid bilayers, could be used for cell culture in order to utilise micro-impedance spectroscopy to examine further biological applications. To that purpose we have used normal epithelial cells from kidney (RPTEC) and a kidney cancer cell model (786-O). We demonstrate that the Tethapod system is compatible with the culture of 10,000 cells seeded to grow on a small area gold measurement electrode for several days without affecting the cell viability. Furthermore, the range of frequencies for EIS measurements were tuned to examine easily the characteristics of the cell monolayer. We demonstrate significant differences in the paracellular resistance pathway between normal and cancer kidney epithelial cells. Thus, we conclude that this device has advantages for the study of cultured cells that include (i) the configuration of measurement and reference electrodes across a microfluidic channel, and (ii) the small surface area of 6 parallel measurement electrodes (2.1 mm2) integrated in a microfluidic system. These characteristics might improve micro-impedance spectroscopy measurement techniques to provide a simple tool for further studies in the field of the patho-physiology of biological barriers.