Green synthesis of Ag nanoparticles from Leucus aspera and its application in anticancer activity against alveolar cancer

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Experimental Nanoscience Pub Date : 2021-12-20 DOI:10.1080/17458080.2021.2007886
Huagen Zhang, Tongfei Li, Wentao Luo, Gui Xia Peng, Jie Xiong
{"title":"Green synthesis of Ag nanoparticles from Leucus aspera and its application in anticancer activity against alveolar cancer","authors":"Huagen Zhang, Tongfei Li, Wentao Luo, Gui Xia Peng, Jie Xiong","doi":"10.1080/17458080.2021.2007886","DOIUrl":null,"url":null,"abstract":"Abstract Leucus aspera is a perennial plant traditionally used as an herbal medicine in many countries. The biosynthesis of metal nanoparticles using medicinal plants is not only economical but also environmentally friendly as well as having miscellaneous biomedical applications. In this study, Leucus aspera extract as a stabilising and reducing agent was utilised to synthesise Ag nanoparticles in the aqueous medium. In addition, the anti-alveolar cancer property of AgNPs was investigated in the in vitro condition. Various techniques containing UV–Vis. spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometry (EDS) were used to characterise the synthesised nanoparticles. On the other hand, the MTT assay was run to evaluate the cytotoxicity activity of AgNPs. The crystal size of AgNPs, according to the XRD analysis, was 34.22 nm. Moreover, the uniform spherical morphology ranging from 40.67 to 58.17 nm was detected in the SEM images for the biosynthesised nanoparticles. In the antioxidant test, the IC50 of AgNPs and BHT against DPPH free radicals were 87 and 41 µg/mL, respectively. The synthesised nanocomposite had very low cell viability and high anti-alveolar cancer activities against A549 cell line without any cytotoxicity on the normal cell line (HUVEC). The viability of malignant alveolar cell line reduced dose-dependently in the presence of Ag NPs. Perhaps notable anti-alveolar cancer activities of the synthesised nanocomposite against common alveolar cancer cell line are linked to their antioxidant activities.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"17 1","pages":"47 - 60"},"PeriodicalIF":2.6000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17458080.2021.2007886","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract Leucus aspera is a perennial plant traditionally used as an herbal medicine in many countries. The biosynthesis of metal nanoparticles using medicinal plants is not only economical but also environmentally friendly as well as having miscellaneous biomedical applications. In this study, Leucus aspera extract as a stabilising and reducing agent was utilised to synthesise Ag nanoparticles in the aqueous medium. In addition, the anti-alveolar cancer property of AgNPs was investigated in the in vitro condition. Various techniques containing UV–Vis. spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectrometry (EDS) were used to characterise the synthesised nanoparticles. On the other hand, the MTT assay was run to evaluate the cytotoxicity activity of AgNPs. The crystal size of AgNPs, according to the XRD analysis, was 34.22 nm. Moreover, the uniform spherical morphology ranging from 40.67 to 58.17 nm was detected in the SEM images for the biosynthesised nanoparticles. In the antioxidant test, the IC50 of AgNPs and BHT against DPPH free radicals were 87 and 41 µg/mL, respectively. The synthesised nanocomposite had very low cell viability and high anti-alveolar cancer activities against A549 cell line without any cytotoxicity on the normal cell line (HUVEC). The viability of malignant alveolar cell line reduced dose-dependently in the presence of Ag NPs. Perhaps notable anti-alveolar cancer activities of the synthesised nanocomposite against common alveolar cancer cell line are linked to their antioxidant activities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白曲霉Ag纳米粒子的绿色合成及其在肺泡癌症抗癌中的应用
摘要白曲霉是一种多年生植物,在许多国家传统上被用作草药。使用药用植物生物合成金属纳米颗粒不仅经济,而且对环境友好,并且具有各种生物医学应用。在本研究中,利用白曲霉提取物作为稳定剂和还原剂在水介质中合成Ag纳米颗粒。此外,在体外条件下研究了AgNPs的抗肺泡癌症特性。包含UV–Vis的各种技术。使用光谱、FT-IR光谱、X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)和能谱仪(EDS)对合成的纳米颗粒进行了表征。另一方面,进行MTT法测定AgNPs的细胞毒性活性。根据XRD分析,AgNPs的晶体尺寸为34.22 nm。此外,均匀的球形形态范围从40.67到58.17 在生物合成的纳米颗粒的SEM图像中检测到nm。在抗氧化试验中,AgNPs和BHT对DPPH自由基的IC50分别为87和41 µg/mL。合成的纳米复合材料对A549细胞系具有非常低的细胞活力和高的抗溶性癌症活性,而对正常细胞系(HUVEC)没有任何细胞毒性。在Ag-NPs存在下,恶性肺泡细胞系的生存能力呈剂量依赖性降低。合成的纳米复合材料对抗普通肺泡癌症细胞系的显著抗肺泡癌症活性可能与其抗氧化活性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Nanoscience
Journal of Experimental Nanoscience 工程技术-材料科学:综合
CiteScore
4.10
自引率
25.00%
发文量
39
审稿时长
6.5 months
期刊介绍: Journal of Experimental Nanoscience, an international and multidisciplinary journal, provides a showcase for advances in the experimental sciences underlying nanotechnology and nanomaterials. The journal exists to bring together the most significant papers making original contributions to nanoscience in a range of fields including biology and biochemistry, physics, chemistry, chemical, electrical and mechanical engineering, materials, pharmaceuticals and medicine. The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.
期刊最新文献
Inhibition of restenosis after balloon injury in rabbit vessels by integrin αvβ3-targeted 10058-F4 nanoparticles Enhancing structural and optical properties of titanium dioxide nanoparticles (TiO2 NPs) incorporating with indium tin oxide nanoparticles (ITO NPs): effects of annealing temperature Alginate-wrapped NiO-ZnO nanocomposites-based catalysts for water treatment Evolution of the precursor structure during the preparation of the nanopowders with perovskite-type LnLn’O3 (Ln, Ln’ = REE) complex oxide phase in the La2O3-Lu2O3-Yb2O3 system Statement of Retraction: Image processing algorithm for mechanical properties testing of high temperature materials based on time‐frequency analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1