Mahesh Liyanage, M. Hanafi, M. Sulaiman, R. Ismail, G. Gunaratne, Saman Dharmakeerthi, Geethika Rupasinghe, A. Mayakaduwa
{"title":"Consequences of nitrogen mineralization dynamics for soil health restoration of degraded tea-growing soil using organic amendments","authors":"Mahesh Liyanage, M. Hanafi, M. Sulaiman, R. Ismail, G. Gunaratne, Saman Dharmakeerthi, Geethika Rupasinghe, A. Mayakaduwa","doi":"10.4067/s0718-58392022000200199","DOIUrl":null,"url":null,"abstract":"Understanding of N mineralization dynamics of frequently available organic amendments in the tea ( Camellia sinensis (L.) O. Kuntze) ecosystem has greater importance in land restoration. Hence, this study focused on assessing the effects of organic amendments on N mineralization and soil quality improvement in tea growing soil. Garden compost (CMP), Gliricidia ( Gliricidia sepium (Jacq.)) leaves (GLI), charged tea waste biochar (CBC), tea waste (TW), and tea waste biochar without charging (RBC) were incubated with soil at a rate of 186 mg N kg -1 . Incubated soils were analyzed periodically for soil pH, available NO 3 - -N, NH 4 + -N, soil P, and S for 120-d. Microbial biomass C (MBC), protease, urease, phosphatase, and dehydrogenase activities were determined at the end of the incubation. All amendments showed different N mineralization patterns. Gliricidia , CMP, and TW released N by 94%, 43%, and 24%, respectively. Gliricidia showed the highest peak of NH 4 + -N after 21-d incubation, depicting rapid ammonification. Charged BC and RBC showed N immobilization throughout the incubation period, which finally amounted to 12% and 17%, respectively. Gliricidia showed 0.79 mg d -1 maximum N mineralization rate and 150 mg kg -1 total mineralizable N. The N mineralization was sequenced as GLI > CMP > TW > CBC > RBC. All amendments showed more than 45% increase in MBC, where Gliricidia gave the highest (146%) compared to the control. Application of CBC promotes all enzyme activities by > 90% over control. In conclusion, GLI meets the immediate plant N requirement, and CBC significantly improves the degraded soil quality.","PeriodicalId":9851,"journal":{"name":"Chilean Journal of Agricultural Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chilean Journal of Agricultural Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4067/s0718-58392022000200199","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding of N mineralization dynamics of frequently available organic amendments in the tea ( Camellia sinensis (L.) O. Kuntze) ecosystem has greater importance in land restoration. Hence, this study focused on assessing the effects of organic amendments on N mineralization and soil quality improvement in tea growing soil. Garden compost (CMP), Gliricidia ( Gliricidia sepium (Jacq.)) leaves (GLI), charged tea waste biochar (CBC), tea waste (TW), and tea waste biochar without charging (RBC) were incubated with soil at a rate of 186 mg N kg -1 . Incubated soils were analyzed periodically for soil pH, available NO 3 - -N, NH 4 + -N, soil P, and S for 120-d. Microbial biomass C (MBC), protease, urease, phosphatase, and dehydrogenase activities were determined at the end of the incubation. All amendments showed different N mineralization patterns. Gliricidia , CMP, and TW released N by 94%, 43%, and 24%, respectively. Gliricidia showed the highest peak of NH 4 + -N after 21-d incubation, depicting rapid ammonification. Charged BC and RBC showed N immobilization throughout the incubation period, which finally amounted to 12% and 17%, respectively. Gliricidia showed 0.79 mg d -1 maximum N mineralization rate and 150 mg kg -1 total mineralizable N. The N mineralization was sequenced as GLI > CMP > TW > CBC > RBC. All amendments showed more than 45% increase in MBC, where Gliricidia gave the highest (146%) compared to the control. Application of CBC promotes all enzyme activities by > 90% over control. In conclusion, GLI meets the immediate plant N requirement, and CBC significantly improves the degraded soil quality.
期刊介绍:
ChileanJAR publishes original Research Articles, Scientific Notes and Reviews of agriculture, multidisciplinary and agronomy: plant production, plant protection, genetic resources and biotechnology, water management, soil sciences, environment, agricultural economics, and animal production (focused in ruminant feeding). The editorial process is a double-blind peer reviewing, Editorial Office checks format, composition, and completeness, which is a requirement to continue the editorial process. Editorial Committee and Reviewers evaluate relevance and scientific merit of manuscript.