Machining-induced surface integrity and nanocrystalline surface layers in cryogenic finishing turning of Inconel 718

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2022-07-04 DOI:10.1080/10910344.2022.2129989
G. Toker, J. Schoop, H. Karaca
{"title":"Machining-induced surface integrity and nanocrystalline surface layers in cryogenic finishing turning of Inconel 718","authors":"G. Toker, J. Schoop, H. Karaca","doi":"10.1080/10910344.2022.2129989","DOIUrl":null,"url":null,"abstract":"Abstract In this study, the effects of cryogenic and flood cooling on the surface integrity of Inconel 718 are investigated for face turning with four selected cutting speeds of 25, 50, 75 and 100 m/min. Surface integrity of machined samples was characterized in terms of surface morphology, sub-surface microstructure, microhardness, x-ray diffraction textures, and residual stresses. While the differences between cryogenic and flood cooling were relatively limited for the majority of surface integrity metrics, a substantially increased (+80% vs flood condition) nanolayer depth was observed at the highest cutting speed of 100 m/min with cryogenic cooling. Additionally, cryogenic cooling resulted in slightly improved surface roughness and slightly increased compressive residual stress, particularly at elevated cutting speeds. Nb-rich secondary phases were detected after machining for all conditions, however, cryogenic cooling and low cutting speed led to reduced mixing of these nanocrystalized phases in the recrystallized surface layer. Based on these observations a and qualitative model for surface generation and nanocrystallization under flood and cryogenic machining conditions was proposed. Overall, the effect of cryogenic cooling on nanolayer generation was most pronounced at elevated speeds, suggesting the potential for cryogenic cooling to allow for more aggressive, yet sustainable, processing strategies with improved surface integrity.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2129989","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this study, the effects of cryogenic and flood cooling on the surface integrity of Inconel 718 are investigated for face turning with four selected cutting speeds of 25, 50, 75 and 100 m/min. Surface integrity of machined samples was characterized in terms of surface morphology, sub-surface microstructure, microhardness, x-ray diffraction textures, and residual stresses. While the differences between cryogenic and flood cooling were relatively limited for the majority of surface integrity metrics, a substantially increased (+80% vs flood condition) nanolayer depth was observed at the highest cutting speed of 100 m/min with cryogenic cooling. Additionally, cryogenic cooling resulted in slightly improved surface roughness and slightly increased compressive residual stress, particularly at elevated cutting speeds. Nb-rich secondary phases were detected after machining for all conditions, however, cryogenic cooling and low cutting speed led to reduced mixing of these nanocrystalized phases in the recrystallized surface layer. Based on these observations a and qualitative model for surface generation and nanocrystallization under flood and cryogenic machining conditions was proposed. Overall, the effect of cryogenic cooling on nanolayer generation was most pronounced at elevated speeds, suggesting the potential for cryogenic cooling to allow for more aggressive, yet sustainable, processing strategies with improved surface integrity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铬镍铁合金718深冷精车加工诱导的表面完整性和纳米晶表面层
摘要在本研究中,研究了在25、50、75和100四种选择的切削速度下,低温和溢流冷却对铬镍铁合金718表面完整性的影响 米/分钟。从表面形态、亚表面微观结构、显微硬度、x射线衍射纹理和残余应力等方面对加工样品的表面完整性进行了表征。虽然在大多数表面完整性指标中,低温冷却和溢流冷却之间的差异相对有限,但在最高切割速度100 米/分钟的低温冷却。此外,低温冷却导致表面粗糙度略有改善,压缩残余应力略有增加,尤其是在提高切割速度时。在所有条件下加工后都检测到富含Nb的第二相,然而,低温冷却和低切割速度导致这些纳米晶相在再结晶表面层中的混合减少。基于这些观察结果,提出了在洪水和低温加工条件下表面生成和纳米化的定性模型。总体而言,低温冷却对纳米层生成的影响在高速下最为明显,这表明低温冷却有可能实现更积极但可持续的加工策略,并改善表面完整性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III Flow field design and simulation in electrochemical machining for closed integral components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1