Covariate-Assisted Community Detection in Multi-Layer Networks

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-06-02 DOI:10.1080/07350015.2022.2085726
Shi Xu, Yao Zhen, Junhui Wang
{"title":"Covariate-Assisted Community Detection in Multi-Layer Networks","authors":"Shi Xu, Yao Zhen, Junhui Wang","doi":"10.1080/07350015.2022.2085726","DOIUrl":null,"url":null,"abstract":"ABSTRACT Communities in multi-layer networks consist of nodes with similar connectivity patterns across all layers. This article proposes a tensor-based community detection method in multi-layer networks, which leverages available node-wise covariates to improve community detection accuracy. This is motivated by the network homophily principle, which suggests that nodes with similar covariates tend to reside in the same community. To take advantage of the node-wise covariates, the proposed method augments the multi-layer network with an additional layer constructed from the node similarity matrix with proper scaling, and conducts a Tucker decomposition of the augmented multi-layer network, yielding the spectral embedding vector of each node for community detection. Asymptotic consistencies of the proposed method in terms of community detection are established, which are also supported by numerical experiments on various synthetic networks and two real-life multi-layer networks.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2085726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7

Abstract

ABSTRACT Communities in multi-layer networks consist of nodes with similar connectivity patterns across all layers. This article proposes a tensor-based community detection method in multi-layer networks, which leverages available node-wise covariates to improve community detection accuracy. This is motivated by the network homophily principle, which suggests that nodes with similar covariates tend to reside in the same community. To take advantage of the node-wise covariates, the proposed method augments the multi-layer network with an additional layer constructed from the node similarity matrix with proper scaling, and conducts a Tucker decomposition of the augmented multi-layer network, yielding the spectral embedding vector of each node for community detection. Asymptotic consistencies of the proposed method in terms of community detection are established, which are also supported by numerical experiments on various synthetic networks and two real-life multi-layer networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层网络中的协变量辅助社区检测
摘要多层网络中的社区由跨所有层具有相似连接模式的节点组成。本文提出了一种多层网络中基于张量的社区检测方法,该方法利用可用的节点协变量来提高社区检测的准确性。这是由网络同质性原理引起的,该原理表明具有相似协变量的节点往往位于同一社区中。为了利用逐节点协变量,所提出的方法用由节点相似性矩阵构建的具有适当比例的附加层来扩充多层网络,并对扩充的多层网络进行Tucker分解,产生用于社区检测的每个节点的谱嵌入向量。建立了所提出的方法在社区检测方面的渐近一致性,并在各种合成网络和两个真实的多层网络上进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1