An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies

IF 2.6 2区 社会学 Q1 COMMUNICATION Journal of Information Technology & Politics Pub Date : 2022-06-09 DOI:10.1080/19331681.2022.2082622
A. Cavalieri, P. Ducange, S. Fabi, F. Russo, N. Tonellotto
{"title":"An Intelligent system for the categorization of question time official documents of the Italian Chamber of Deputies","authors":"A. Cavalieri, P. Ducange, S. Fabi, F. Russo, N. Tonellotto","doi":"10.1080/19331681.2022.2082622","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system leverages text classification models to perform the document categorization. The system is aimed at supporting and facilitating the research activities of political science scholars, who deal with comparative and longitudinal analysis of thousands of documents. To select the best classification models for our specific task, several classical machine learning and deep learning-based text classification models have been experimentally compared.","PeriodicalId":47047,"journal":{"name":"Journal of Information Technology & Politics","volume":"20 1","pages":"213 - 234"},"PeriodicalIF":2.6000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Technology & Politics","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/19331681.2022.2082622","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT In this work, we present an intelligent system for the automatic categorization of political documents, specifically the documents containing the parliamentary questions collected during the weekly Question Times at the Chamber of Deputies of the Italian Republic. The proposed intelligent system leverages text classification models to perform the document categorization. The system is aimed at supporting and facilitating the research activities of political science scholars, who deal with comparative and longitudinal analysis of thousands of documents. To select the best classification models for our specific task, several classical machine learning and deep learning-based text classification models have been experimentally compared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
意大利众议院质询时间官方文件的智能分类系统
在这项工作中,我们提出了一个用于政治文件自动分类的智能系统,特别是在意大利共和国众议院每周提问时间收集的包含议会问题的文件。提出的智能系统利用文本分类模型来执行文档分类。该系统的目的是支持和促进政治科学学者的研究活动,他们处理成千上万份文件的比较和纵向分析。为了为我们的特定任务选择最佳分类模型,我们对几种经典的机器学习和基于深度学习的文本分类模型进行了实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.60
自引率
7.70%
发文量
31
期刊最新文献
Partisan news recommendations. Studying the effect of politicians’ online news sharing on news credibility From tweets to tensions: exploring the roots of political polarization in Turkish constitutional referendum Self-interest and preferences for the regulation of artificial intelligence Critical social media and political engagement in authoritarian regimes: the role of state media fairness perceptions Social media and political contention - challenges and opportunities for comparative research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1