{"title":"HYDRODYNAMIC ANALYSES OF THE FLOW PATTERNS IN STIRRED VESSEL OF TWO-BLADED IMPELLER","authors":"H. Laidoudi","doi":"10.24874/JSSCM.2020.14.02.08","DOIUrl":null,"url":null,"abstract":"In this paper, the governing equations of continuity and momentum subjected to suitable boundary conditions have been solved numerically to investigate the fluid flow in stirred vessel of two-bladed impeller. The numerical simulations have been carried out in three-dimensions for laminar flow. The studied fluid was considered Newtonian and incompressible. Our research studied the effects of geometrical configurations of the two-bladed impeller and its rotational speed on fluid patterns and mechanical power consumption. The innovative point in this paper is that the blades of the impeller contain three equal-sized holes of circular cross-section. The diameter of the hole (d) to the impeller diameter (D) gives the ratio d/D. the impeller speed is controlled by the Reynolds number (Re). The obtained results have been illustrated and discussed for the range of following governing parameters: d/D = 0 to 0.4 and Re = 1 to 300. The results showed that the studied parameters have significant effects on fluid flow and consumption power and the perforated blades of ratio d/D = 0.133 is more efficient than plan blades. Also, a new correlation is proposed to describe the consumption power as function of d/D and Re.","PeriodicalId":42945,"journal":{"name":"Journal of the Serbian Society for Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Serbian Society for Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/JSSCM.2020.14.02.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, the governing equations of continuity and momentum subjected to suitable boundary conditions have been solved numerically to investigate the fluid flow in stirred vessel of two-bladed impeller. The numerical simulations have been carried out in three-dimensions for laminar flow. The studied fluid was considered Newtonian and incompressible. Our research studied the effects of geometrical configurations of the two-bladed impeller and its rotational speed on fluid patterns and mechanical power consumption. The innovative point in this paper is that the blades of the impeller contain three equal-sized holes of circular cross-section. The diameter of the hole (d) to the impeller diameter (D) gives the ratio d/D. the impeller speed is controlled by the Reynolds number (Re). The obtained results have been illustrated and discussed for the range of following governing parameters: d/D = 0 to 0.4 and Re = 1 to 300. The results showed that the studied parameters have significant effects on fluid flow and consumption power and the perforated blades of ratio d/D = 0.133 is more efficient than plan blades. Also, a new correlation is proposed to describe the consumption power as function of d/D and Re.