Research on solving heading attitude of airdrop cargo platform based on line features

IF 2.3 4区 计算机科学 Q2 Computer Science International Journal of Advanced Robotic Systems Pub Date : 2022-05-01 DOI:10.1177/17298806221081643
Xia Li, Bin Zhang, Hongying Zhang, Ronghua Xu, Yalei Bai
{"title":"Research on solving heading attitude of airdrop cargo platform based on line features","authors":"Xia Li, Bin Zhang, Hongying Zhang, Ronghua Xu, Yalei Bai","doi":"10.1177/17298806221081643","DOIUrl":null,"url":null,"abstract":"The present study envisages the development of an improved line features method to accurately estimate the attitude of the airdrop cargo platform during airdrop landing. Therefore, this article uses the geometric characteristics of the line features to improve the traditional line features extraction and removes the locally dense line features in the image, which greatly reduces the number of line features in the image. Then, the improved random sample consensus is used to remove the mismatching of line features, which improves the real-time performance of the algorithm and the accuracy of the attitude angle, and makes up for the problem of difficult extraction of point features or low matching accuracy in the airdrop environment. Finally, a constraint equation is established for the line features that are successfully matched, and using homography to obtain attitude of the airdrop cargo platform. This article also meets the requirements of accurate calculation attitude of airdrop cargo platform. The experiment shows the significance and feasibility of the airdrop cargo platform heading and attitude calculation technology based on the line feature, and it has a good application prospect.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221081643","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The present study envisages the development of an improved line features method to accurately estimate the attitude of the airdrop cargo platform during airdrop landing. Therefore, this article uses the geometric characteristics of the line features to improve the traditional line features extraction and removes the locally dense line features in the image, which greatly reduces the number of line features in the image. Then, the improved random sample consensus is used to remove the mismatching of line features, which improves the real-time performance of the algorithm and the accuracy of the attitude angle, and makes up for the problem of difficult extraction of point features or low matching accuracy in the airdrop environment. Finally, a constraint equation is established for the line features that are successfully matched, and using homography to obtain attitude of the airdrop cargo platform. This article also meets the requirements of accurate calculation attitude of airdrop cargo platform. The experiment shows the significance and feasibility of the airdrop cargo platform heading and attitude calculation technology based on the line feature, and it has a good application prospect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于直线特征的空投货物平台航向姿态求解方法研究
本研究设想发展一种改进的线特征方法,以准确估计空投货物平台在空投降落过程中的姿态。因此,本文利用线特征的几何特征对传统的线特征提取进行改进,去除图像中局部密集的线特征,大大减少了图像中的线特征数量。然后,利用改进的随机样本一致性去除线特征的不匹配,提高了算法的实时性和姿态角的精度,弥补了空投环境中点特征提取困难或匹配精度低的问题。最后,对匹配成功的直线特征建立约束方程,利用单应性求空投货物平台姿态。本文还满足了空投货物平台姿态精确计算的要求。实验证明了基于线路特征的空投货物平台航向姿态计算技术的意义和可行性,具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
期刊最新文献
Expanded photo-model-based stereo vision pose estimation using a shooting distance unknown photo Enhanced lightweight deep network for efficient livestock detection in grazing areas Manipulate mechanism design and synchronous motion application for driving simulator A general method for the manipulability analysis of serial robot manipulators Design, simulation, and experiment for the end effector of a spherical fruit picking robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1