Arc-like magmatism in syn- to post-collisional setting: The Ediacaran Angra Fria Magmatic Complex (NW Namibia) and its cross-Atlantic correlatives in the south Brazilian Florianópolis Batholith
Vojtěch Janoušek , Luana Moreira Florisbal , Jiří Konopásek , Petr Jeřábek , Maria de Fátima Bitencourt , Petr Gadas , Vojtěch Erban , Veronika Kopačková-Strnadová
{"title":"Arc-like magmatism in syn- to post-collisional setting: The Ediacaran Angra Fria Magmatic Complex (NW Namibia) and its cross-Atlantic correlatives in the south Brazilian Florianópolis Batholith","authors":"Vojtěch Janoušek , Luana Moreira Florisbal , Jiří Konopásek , Petr Jeřábek , Maria de Fátima Bitencourt , Petr Gadas , Vojtěch Erban , Veronika Kopačková-Strnadová","doi":"10.1016/j.jog.2022.101960","DOIUrl":null,"url":null,"abstract":"<div><p>Ediacaran syn-tectonic plutonic rocks (amphibole gabbros, quartz diorites/tonalites to biotite- and muscovite-bearing granites) of the Angra Fria Magmatic Complex (Kaoko Belt, north-western Namibia) belong to two compositionally similar, magnesian, transitional tholeiitic–calc-alkaline suites, the Older (∼625–620 Ma) and the Younger (∼585–575 Ma). Both have counterparts in the broadly contemporaneous Florianópolis Batholith (southern Brazil), from which they were separated during the Cretaceous opening of the southern Atlantic. In the Angra Fria Magmatic Complex, the only unequivocal mantle contributions are identified in mingling zones of the Younger Suite and hybrid mafic–intermediate dykes of uncertain age. Previously published Hf-in-zircon isotopic data, together with new whole-rock geochemical and Sr–Nd isotopic signatures, underline an important role of crustal anatexis of a material with late Palaeoproterozoic to early Mesoproterozoic mean crustal residence (1.9–1.5 Ga). This interval resembles some of the published Nd model ages for Tonian ‘Adamastor Rift’-related felsic magmatic rocks in the Namibian Coastal and Uruguayan Punta del Este terranes. In detail, the Older Suite probably originated mainly by fluid-present melting of metabasalts and metatonalites, followed by (near) closed-system fractional crystallization (with or without accumulation) of amphibole ± plagioclase. For the Younger Suite, the principal process was the dehydration melting of relatively felsic lower crustal protoliths (metagreywackes or intermediate–acid orthogneisses >> metapelites), leaving garnet in the residue. Based on the geological context, the conspicuous enrichment of hydrous-fluid-mobile large ion lithophile over the conservative high field strength elements is not interpreted through a classic model of oceanic plate subduction, devolatilization, and fluxed-melting of the overriding mantle wedge. Instead, it is thought to reflect high-grade metamorphism of deeply buried continental crust and attendant water-fluxed melting of the overlying crustal lithologies, connected with inversion of the Tonian ‘Adamastor Rift’.</p></div>","PeriodicalId":54823,"journal":{"name":"Journal of Geodynamics","volume":"155 ","pages":"Article 101960"},"PeriodicalIF":2.1000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodynamics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264370722000643","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ediacaran syn-tectonic plutonic rocks (amphibole gabbros, quartz diorites/tonalites to biotite- and muscovite-bearing granites) of the Angra Fria Magmatic Complex (Kaoko Belt, north-western Namibia) belong to two compositionally similar, magnesian, transitional tholeiitic–calc-alkaline suites, the Older (∼625–620 Ma) and the Younger (∼585–575 Ma). Both have counterparts in the broadly contemporaneous Florianópolis Batholith (southern Brazil), from which they were separated during the Cretaceous opening of the southern Atlantic. In the Angra Fria Magmatic Complex, the only unequivocal mantle contributions are identified in mingling zones of the Younger Suite and hybrid mafic–intermediate dykes of uncertain age. Previously published Hf-in-zircon isotopic data, together with new whole-rock geochemical and Sr–Nd isotopic signatures, underline an important role of crustal anatexis of a material with late Palaeoproterozoic to early Mesoproterozoic mean crustal residence (1.9–1.5 Ga). This interval resembles some of the published Nd model ages for Tonian ‘Adamastor Rift’-related felsic magmatic rocks in the Namibian Coastal and Uruguayan Punta del Este terranes. In detail, the Older Suite probably originated mainly by fluid-present melting of metabasalts and metatonalites, followed by (near) closed-system fractional crystallization (with or without accumulation) of amphibole ± plagioclase. For the Younger Suite, the principal process was the dehydration melting of relatively felsic lower crustal protoliths (metagreywackes or intermediate–acid orthogneisses >> metapelites), leaving garnet in the residue. Based on the geological context, the conspicuous enrichment of hydrous-fluid-mobile large ion lithophile over the conservative high field strength elements is not interpreted through a classic model of oceanic plate subduction, devolatilization, and fluxed-melting of the overriding mantle wedge. Instead, it is thought to reflect high-grade metamorphism of deeply buried continental crust and attendant water-fluxed melting of the overlying crustal lithologies, connected with inversion of the Tonian ‘Adamastor Rift’.
期刊介绍:
The Journal of Geodynamics is an international and interdisciplinary forum for the publication of results and discussions of solid earth research in geodetic, geophysical, geological and geochemical geodynamics, with special emphasis on the large scale processes involved.