Increase in overtopping rate caused by local gust-winds during the passage of a typhoon

IF 1.9 3区 工程技术 Q3 ENGINEERING, CIVIL Coastal Engineering Journal Pub Date : 2022-01-02 DOI:10.1080/21664250.2022.2027090
Naoto Inagaki, T. Shibayama, T. Takabatake, M. Esteban, Martin Mäll, Thit Oo Kyaw
{"title":"Increase in overtopping rate caused by local gust-winds during the passage of a typhoon","authors":"Naoto Inagaki, T. Shibayama, T. Takabatake, M. Esteban, Martin Mäll, Thit Oo Kyaw","doi":"10.1080/21664250.2022.2027090","DOIUrl":null,"url":null,"abstract":"ABSTRACT A field survey of Fukuura Coast (in Tokyo Bay, Japan) revealed during the passage of Typhoon Faxai in 2019 waves with considerable momentum caused significant wave overtopping, resulting in structural damage to coastal defenses and localized flooding. The hindcasted wave height using a third-generation wave model was not high enough to explain the extent of the local damage at Fukuura Coast, likely due to such methods failing to take into account the strong gust-winds recorded during the passage of the typhoon. To solve such problems the authors developed a new numerical model that takes into account the dynamic interaction of air and water, based on the finite volume method (FVM) and the volume of fluid method (VOF). Although this model still slightly underestimates the measurements in the experiments previously conducted by different authors, it is better than existing methods when estimating the overtopping rates under strong winds. The model was then applied to a real-scale model of Fukuura Coast, where by taking into account strong gust-wind speed of 41 m/s the authors were able to explain the phenomena that took place.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2022.2027090","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT A field survey of Fukuura Coast (in Tokyo Bay, Japan) revealed during the passage of Typhoon Faxai in 2019 waves with considerable momentum caused significant wave overtopping, resulting in structural damage to coastal defenses and localized flooding. The hindcasted wave height using a third-generation wave model was not high enough to explain the extent of the local damage at Fukuura Coast, likely due to such methods failing to take into account the strong gust-winds recorded during the passage of the typhoon. To solve such problems the authors developed a new numerical model that takes into account the dynamic interaction of air and water, based on the finite volume method (FVM) and the volume of fluid method (VOF). Although this model still slightly underestimates the measurements in the experiments previously conducted by different authors, it is better than existing methods when estimating the overtopping rates under strong winds. The model was then applied to a real-scale model of Fukuura Coast, where by taking into account strong gust-wind speed of 41 m/s the authors were able to explain the phenomena that took place.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在台风通过期间,由当地的阵风引起的超顶率增加
摘要:一项对日本东京湾福浦海岸的实地调查显示,在2019年台风“Faxai”通过期间,具有相当大动量的海浪造成了严重的波浪漫顶,导致海岸防御结构受损和局部洪水泛滥。使用第三代波浪模型预测的波浪高度不足以解释福浦海岸的局部破坏程度,这可能是因为这些方法没有考虑到台风经过期间记录的强风。为了解决这些问题,作者在有限体积法(FVM)和流体体积法(VOF)的基础上开发了一个新的数值模型,该模型考虑了空气和水的动态相互作用。尽管该模型仍然略微低估了不同作者之前进行的实验中的测量结果,但在估计强风下的漫顶率时,它比现有方法要好。然后将该模型应用于福浦海岸的真实尺度模型,通过考虑41米/秒的强风速度,作者能够解释所发生的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Coastal Engineering Journal
Coastal Engineering Journal 工程技术-工程:大洋
CiteScore
4.60
自引率
8.30%
发文量
0
审稿时长
7.5 months
期刊介绍: Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.
期刊最新文献
Analysis of climate change and climate variability impacts on coastal storms induced by extratropical cyclones: a case study of the August 2015 storm in central Chile Millennial and contemporary dynamics of the barrier estuary entrance at Moruya, SE Australia An automatic shoreline extraction method from SAR imagery using DeepLab-v3+ and its versatility Long-term erosion at the north of Hatiya Island in the Lower Meghna Estuary, Bangladesh Performance Evaluation of XBeach for Seawater-Aquifer Interaction Simulation in Swash Zone of Gravel Beach: An Attempt to Reduce the Phase Errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1