Multiparty Reach and Frequency Histogram: Private, Secure, and Practical

Badih Ghazi, Ben Kreuter, Ravi Kumar, Pasin Manurangsi, Jiayu Peng, E. Skvortsov, Yao Wang, Craig Wright
{"title":"Multiparty Reach and Frequency Histogram: Private, Secure, and Practical","authors":"Badih Ghazi, Ben Kreuter, Ravi Kumar, Pasin Manurangsi, Jiayu Peng, E. Skvortsov, Yao Wang, Craig Wright","doi":"10.2478/popets-2022-0019","DOIUrl":null,"url":null,"abstract":"Abstract Consider the setting where multiple parties each hold a multiset of users and the task is to estimate the reach (i.e., the number of distinct users appearing across all parties) and the frequency histogram (i.e., fraction of users appearing a given number of times across all parties). In this work we introduce a new sketch for this task, based on an exponentially distributed counting Bloom filter. We combine this sketch with a communication-efficient multi-party protocol to solve the task in the multi-worker setting. Our protocol exhibits both differential privacy and security guarantees in the honest-but-curious model and in the presence of large subsets of colluding workers; furthermore, its reach and frequency histogram estimates have a provably small error. Finally, we show the practicality of the protocol by evaluating it on internet-scale audiences.","PeriodicalId":74556,"journal":{"name":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","volume":"2022 1","pages":"373 - 395"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings on Privacy Enhancing Technologies. Privacy Enhancing Technologies Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/popets-2022-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract Consider the setting where multiple parties each hold a multiset of users and the task is to estimate the reach (i.e., the number of distinct users appearing across all parties) and the frequency histogram (i.e., fraction of users appearing a given number of times across all parties). In this work we introduce a new sketch for this task, based on an exponentially distributed counting Bloom filter. We combine this sketch with a communication-efficient multi-party protocol to solve the task in the multi-worker setting. Our protocol exhibits both differential privacy and security guarantees in the honest-but-curious model and in the presence of large subsets of colluding workers; furthermore, its reach and frequency histogram estimates have a provably small error. Finally, we show the practicality of the protocol by evaluating it on internet-scale audiences.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多方覆盖和频率直方图:私密、安全、实用
考虑这样的设置,其中多方各持有多组用户,任务是估计覆盖范围(即,在所有各方中出现的不同用户的数量)和频率直方图(即,在所有各方中出现给定次数的用户的比例)。在这项工作中,我们介绍了一个基于指数分布计数布隆滤波器的新草图。我们将此草图与通信高效的多方协议相结合,以解决多工作者设置中的任务。我们的协议在诚实但好奇的模型和存在大量串通工人的情况下展示了不同的隐私和安全保证;此外,它的覆盖范围和频率直方图估计具有可证明的小误差。最后,我们通过在互联网规模的受众上评估该协议来展示其实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
16 weeks
期刊最新文献
Editors' Introduction Compact and Divisible E-Cash with Threshold Issuance On the Robustness of Topics API to a Re-Identification Attack DP-SIPS: A simpler, more scalable mechanism for differentially private partition selection Privacy-Preserving Federated Recurrent Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1