Entropy Analysis of a Variable Viscosity MHD Couette Flow Between Two Concentric Pipes with Convective Cooling

Q2 Engineering Engineering Transactions Pub Date : 2020-07-20 DOI:10.24423/ENGTRANS.1104.20200720
O. Makinde, A. S. Eegunjobi
{"title":"Entropy Analysis of a Variable Viscosity MHD Couette Flow Between Two Concentric Pipes with Convective Cooling","authors":"O. Makinde, A. S. Eegunjobi","doi":"10.24423/ENGTRANS.1104.20200720","DOIUrl":null,"url":null,"abstract":"This paper addresses the combined effects of the magnetic field, thermal buoyancy force, viscous dissipation, Joule heating and temperature-dependent viscosity on the Couette flow of an incompressible conducting fluid between two concentric vertical pipes. It is assumed that convective cooling occurs at the surface of the outer moving pipe while the surface of the inner fixed pipe is maintained at a constant temperature. The nonlinear equations for momentum and energy are obtained and solved numerically using a shooting method coupled with the Runge-Kutta-Fehlberg integration procedure. Relevant results depicting the effects of \nembedded thermophysical parameters on the velocity and temperature profiles, skin friction, the Nusselt number, entropy generation rate and the Bejan number are presented graphically and discussed. It is found that an increase in the magnetic field intensity boosts the entropy generation rate while an increase in convective cooling lessens it.","PeriodicalId":38552,"journal":{"name":"Engineering Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24423/ENGTRANS.1104.20200720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

This paper addresses the combined effects of the magnetic field, thermal buoyancy force, viscous dissipation, Joule heating and temperature-dependent viscosity on the Couette flow of an incompressible conducting fluid between two concentric vertical pipes. It is assumed that convective cooling occurs at the surface of the outer moving pipe while the surface of the inner fixed pipe is maintained at a constant temperature. The nonlinear equations for momentum and energy are obtained and solved numerically using a shooting method coupled with the Runge-Kutta-Fehlberg integration procedure. Relevant results depicting the effects of embedded thermophysical parameters on the velocity and temperature profiles, skin friction, the Nusselt number, entropy generation rate and the Bejan number are presented graphically and discussed. It is found that an increase in the magnetic field intensity boosts the entropy generation rate while an increase in convective cooling lessens it.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对流冷却两根同心管间变粘度MHD Couette流的熵分析
本文讨论了磁场、热浮力、粘性耗散、焦耳加热和温度相关粘度对两个同心垂直管道之间不可压缩传导流体Couette流动的综合影响。假设对流冷却发生在外移动管的表面,而内固定管的表面保持恒定的温度。利用射击法结合龙格-库塔-费尔贝格积分程序,得到了动量和能量的非线性方程,并进行了数值求解。给出并讨论了嵌入热物理参数对速度和温度分布、表面摩擦、努塞尔数、熵产生率和Bejan数的影响的相关结果。研究发现,磁场强度的增加提高了熵的产生率,而对流冷却的增加则降低了熵的生成率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Transactions
Engineering Transactions Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
期刊介绍: Engineering Transactions (formerly Rozprawy Inżynierskie) is a refereed international journal founded in 1952. The journal promotes research and practice in engineering science and provides a forum for interdisciplinary publications combining mechanics with: Material science, Mechatronics, Biomechanics and Biotechnologies, Environmental science, Photonics, Information technologies, Other engineering applications. The journal publishes original papers covering a broad area of research activities including: experimental and hybrid techniques, analytical and numerical approaches. Review articles and special issues are also welcome. Following long tradition, all articles are peer reviewed and our expert referees ensure that the papers accepted for publication comply with high scientific standards. Engineering Transactions is a quarterly journal intended to be interesting and useful for the researchers and practitioners in academic and industrial communities.
期刊最新文献
Investigation of non-stationary processes of an elastic half-space with a built-in elastic cylinder Free vibrations of a nonhomogeneous rod-cylindrical shell-fluid system Mixed-type variational principle for creep problems considering the aggressiveness of external fields Nonlinear feedback control of motion and power of moving sources during heating of the rod Academician Azat Mirzajanzade – 95
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1