Benjamin Tiffon-Terrade, T. Simonneau, A. Caffarra, Romain Boulord, P. Péchier, N. Saurin, Charles Romieu, Damien Fumey, A. Christophe
{"title":"Delayed grape ripening by intermittent shading to counter global warming depends on carry-over effects and water deficit conditions","authors":"Benjamin Tiffon-Terrade, T. Simonneau, A. Caffarra, Romain Boulord, P. Péchier, N. Saurin, Charles Romieu, Damien Fumey, A. Christophe","doi":"10.20870/oeno-one.2023.57.1.5521","DOIUrl":null,"url":null,"abstract":"Grapevine phenology is continuously advancing due to global warming, exposing berry ripening to increasingly drier and hotter episodes that can dramatically affect yield and berry quality. This study aimed to analyse whether intermittent shading produced by panels placed over the plants can delay berry ripening to counter the impact of global warning on phenology. A two-year outdoor trial repeated on two batches of young potted grapevine (cv. Syrah) was conducted in Montpellier (South of France). Shading was created in a row using 2 m-wide horizontal panels placed 2.4 m above the ground. A moderate water deficit was also applied at the start of veraison to half the plants in both full sun (without panels) and shaded conditions to mimic usual field conditions. Variables related to budburst, flowering, veraison and sugar at harvest were analysed in all treatments. Although intermittent shading did not significantly modify air temperature within the canopy when cumulated over the growing season, the panels substantially delayed veraison by up to more than 30 days under well-watered conditions. The most marked phenological shifts were noted in the second year of treatment between flowering and veraison when carbon demand sharply increased during berry formation, suggesting there was a carry-over effect likely due to limited carbon assimilation. This was accompanied by sharp decreases in berry diameter and sugar content per berry at harvest. Higher berry growth and sugar loading were maintained when shading was combined with water deficit. However, the trigger effect of water deficit on veraison almost halved the phenological delay caused by the panels. Overall, a cooler period for ripening could be achieved with panels over the vines but at the expense of berry size and sugar amount in berries. It can be concluded that shading intensity and duration should be adapted to evaporative and soil water conditions to benefit from the phenological delay caused by panels, without altering production in the long term.","PeriodicalId":19510,"journal":{"name":"OENO One","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OENO One","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.20870/oeno-one.2023.57.1.5521","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Grapevine phenology is continuously advancing due to global warming, exposing berry ripening to increasingly drier and hotter episodes that can dramatically affect yield and berry quality. This study aimed to analyse whether intermittent shading produced by panels placed over the plants can delay berry ripening to counter the impact of global warning on phenology. A two-year outdoor trial repeated on two batches of young potted grapevine (cv. Syrah) was conducted in Montpellier (South of France). Shading was created in a row using 2 m-wide horizontal panels placed 2.4 m above the ground. A moderate water deficit was also applied at the start of veraison to half the plants in both full sun (without panels) and shaded conditions to mimic usual field conditions. Variables related to budburst, flowering, veraison and sugar at harvest were analysed in all treatments. Although intermittent shading did not significantly modify air temperature within the canopy when cumulated over the growing season, the panels substantially delayed veraison by up to more than 30 days under well-watered conditions. The most marked phenological shifts were noted in the second year of treatment between flowering and veraison when carbon demand sharply increased during berry formation, suggesting there was a carry-over effect likely due to limited carbon assimilation. This was accompanied by sharp decreases in berry diameter and sugar content per berry at harvest. Higher berry growth and sugar loading were maintained when shading was combined with water deficit. However, the trigger effect of water deficit on veraison almost halved the phenological delay caused by the panels. Overall, a cooler period for ripening could be achieved with panels over the vines but at the expense of berry size and sugar amount in berries. It can be concluded that shading intensity and duration should be adapted to evaporative and soil water conditions to benefit from the phenological delay caused by panels, without altering production in the long term.
OENO OneAgricultural and Biological Sciences-Food Science
CiteScore
4.40
自引率
13.80%
发文量
85
审稿时长
13 weeks
期刊介绍:
OENO One is a peer-reviewed journal that publishes original research, reviews, mini-reviews, short communications, perspectives and spotlights in the areas of viticulture, grapevine physiology, genomics and genetics, oenology, winemaking technology and processes, wine chemistry and quality, analytical chemistry, microbiology, sensory and consumer sciences, safety and health. OENO One belongs to the International Viticulture and Enology Society - IVES, an academic association dedicated to viticulture and enology.