Computing Offloading Decision Based on Adaptive Estimation of Distribution Algorithm in Internet of Vehicles

Pub Date : 2022-01-01 DOI:10.4018/ijcini.312250
F. Yu, Meijia Chen, Bolin Yu
{"title":"Computing Offloading Decision Based on Adaptive Estimation of Distribution Algorithm in Internet of Vehicles","authors":"F. Yu, Meijia Chen, Bolin Yu","doi":"10.4018/ijcini.312250","DOIUrl":null,"url":null,"abstract":"Aimed to improve the efficiency of computing offloading in internet of vehicles (IoV), a collaborative multi-task computing offloading decision mechanism with adaptive estimation of distribution algorithm for MEC-IoV was proposed in this paper. The algorithm considered the energy and time consumption as well as priority among different tasks. It presented a local search strategy and an adaptive learning rate according to the characteristics of the problem to improve the estimation of distribution algorithm. Experimental results show that compared with other offloading strategies, the proposed offloading strategy has obvious effects on the total cost optimization; the solutions quality of AEDA is 86.6% of PSO and 67.3% of GA.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.312250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aimed to improve the efficiency of computing offloading in internet of vehicles (IoV), a collaborative multi-task computing offloading decision mechanism with adaptive estimation of distribution algorithm for MEC-IoV was proposed in this paper. The algorithm considered the energy and time consumption as well as priority among different tasks. It presented a local search strategy and an adaptive learning rate according to the characteristics of the problem to improve the estimation of distribution algorithm. Experimental results show that compared with other offloading strategies, the proposed offloading strategy has obvious effects on the total cost optimization; the solutions quality of AEDA is 86.6% of PSO and 67.3% of GA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于自适应估计分布算法的车联网卸载决策计算
为了提高车联网计算卸载的效率,本文提出了一种基于分布自适应估计算法的多任务协同计算卸载决策机制。该算法考虑了能量和时间消耗以及不同任务之间的优先级。针对问题的特点,提出了一种局部搜索策略和自适应学习率,以改进分布估计算法。实验结果表明,与其他卸载策略相比,所提出的卸载策略对总成本优化效果明显;AEDA的溶液质量为PSO的86.6%和GA的67.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1