{"title":"Evaluating the Efficiency of Student Sports Training Based on Supervised Learning","authors":"Song Kewei, Vicente García Díaz, Seifedine Kadry","doi":"10.4018/ijthi.313427","DOIUrl":null,"url":null,"abstract":"The empirical evaluation of the success of a participant is critical for a thorough assessment of sporting events. Evaluating students' efficiency or scripting in sports is limited, even if skilled experts do it. In this paper, support vector machine-assisted sports training (SVMST) has been proposed to evaluate student sports efficiency. Sports training prototypes are based on different criteria that participate in the matches, traditional game statistics, person quality measures, and opposing data. The success of students is divided into two grades: moderate and large. The primarily supervised learning-based classification method is used to create a template for identifying student sports training efficiency. SVM implements learning methods, data collection methods, effective model assessment methods, and particular difficulties in predicting sports performance. The experimental results show SVMST to high student performance of 98.7%, a low error rate of 9.8%, enhanced assessment ratio of 97.6%, training outcome of 95.6%, and an efficiency ratio of 96.8%.","PeriodicalId":44533,"journal":{"name":"International Journal of Technology and Human Interaction","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Technology and Human Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijthi.313427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
The empirical evaluation of the success of a participant is critical for a thorough assessment of sporting events. Evaluating students' efficiency or scripting in sports is limited, even if skilled experts do it. In this paper, support vector machine-assisted sports training (SVMST) has been proposed to evaluate student sports efficiency. Sports training prototypes are based on different criteria that participate in the matches, traditional game statistics, person quality measures, and opposing data. The success of students is divided into two grades: moderate and large. The primarily supervised learning-based classification method is used to create a template for identifying student sports training efficiency. SVM implements learning methods, data collection methods, effective model assessment methods, and particular difficulties in predicting sports performance. The experimental results show SVMST to high student performance of 98.7%, a low error rate of 9.8%, enhanced assessment ratio of 97.6%, training outcome of 95.6%, and an efficiency ratio of 96.8%.
期刊介绍:
Topics to be discussed in this journal include (but are not limited to) the following: •Anthropological consequences of technology use •Ethical aspects of particular technologies (e.g. e-teaching, ERP, etc.) •Experiential learning though the use of technology in organizations •HCI design for trust development •Influence of gender on the adoption and use of technology •Interaction and conversion between technologies and their impact on society •Intersection of humanities and sciences and its impact on technology use •Normative questions of the development and use of technology