{"title":"Directional recrystallisation processing: a review","authors":"Chao Yang, I. Baker","doi":"10.1080/09506608.2020.1819688","DOIUrl":null,"url":null,"abstract":"ABSTRACT Directional recrystallisation processing is a solid-state process in which a specimen traverses a sharp hot zone and one or a few grains grow as they pass through the hot zone. The mechanism can be either a primary recrystallisation or secondary recrystallisation process, or a combination of both. The mechanism can be either primary recrystallisation or secondary recrystallisation process, or a combination of both. Directional recrystallisation was invented more than 80 years ago to achieve columnar grain structures or single crystals that have enhanced mechanical properties. This review discusses the effects of both processing parameters, including the temperature gradient, hot-zone velocity, and annealing temperature, and microstructural parameters, including stored energy, grain size, initial texture, solutes, and both soluble and insoluble particles, on the resulting microstructures. The results of simulations of directional recrystallisation, including Monte Carlo simulations, Front-Tracking methods, and phase-field simulations, are also reviewed. Finally, the effects of directional recrystallisation on material properties are discussed.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"66 1","pages":"256 - 286"},"PeriodicalIF":16.8000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2020.1819688","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2020.1819688","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
ABSTRACT Directional recrystallisation processing is a solid-state process in which a specimen traverses a sharp hot zone and one or a few grains grow as they pass through the hot zone. The mechanism can be either a primary recrystallisation or secondary recrystallisation process, or a combination of both. The mechanism can be either primary recrystallisation or secondary recrystallisation process, or a combination of both. Directional recrystallisation was invented more than 80 years ago to achieve columnar grain structures or single crystals that have enhanced mechanical properties. This review discusses the effects of both processing parameters, including the temperature gradient, hot-zone velocity, and annealing temperature, and microstructural parameters, including stored energy, grain size, initial texture, solutes, and both soluble and insoluble particles, on the resulting microstructures. The results of simulations of directional recrystallisation, including Monte Carlo simulations, Front-Tracking methods, and phase-field simulations, are also reviewed. Finally, the effects of directional recrystallisation on material properties are discussed.
期刊介绍:
International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content.
Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information.
Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.