Numerical Simulation of Underwater Supersonic Jet of Vehicle with Shell-Shaped Flow Control Structure

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2023-11-01 DOI:10.47176/jafm.16.11.1874
C. Ruixiang, X. Muyao, W. Ying, Y. Chao, Y. Bin, L. Shipeng
{"title":"Numerical Simulation of Underwater Supersonic Jet of Vehicle with Shell-Shaped Flow Control Structure","authors":"C. Ruixiang, X. Muyao, W. Ying, Y. Chao, Y. Bin, L. Shipeng","doi":"10.47176/jafm.16.11.1874","DOIUrl":null,"url":null,"abstract":"When the underwater vehicle engine operates under the condition of over-expansion, the violent pulsation of the flow field pressure at the rear of the nozzle can cause violent fluctuations in engine thrust, leading to engine instability. In order to improve the engine's stability, this study drew inspiration from the wave attenuation characteristics of the shell-shaped surface texture structure and added a multi-layer shell-shaped texture structure to the rear wall to reduce pressure fluctuations in the flow field at the rear of the nozzle . Based on the numerical simulation method, the effects of different bionic shell-shaped structures on jet morphology, wall pressure and engine thrust were compared and analyzed. The results show that the multi-layer bionic shell-shaped texture structure can effectively inhibit the occurrence of periodic phenomena such as bulge, necking, and return stroke in the rear flow field, so as to effectively reduce the pressure fluctuation in the rear flow field of the nozzle. In addition, when the momentum thrust is almost unchanged, it is found through calculations that during the initial stage of the jet, the suppression of thrust is not significant. After 0.005 seconds, the oscillation amplitude of the combined force of pressure difference thrust and back pressure thrust decreased by 22%, and the oscillation amplitude of the total thrust decreased by 20%.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.16.11.1874","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

When the underwater vehicle engine operates under the condition of over-expansion, the violent pulsation of the flow field pressure at the rear of the nozzle can cause violent fluctuations in engine thrust, leading to engine instability. In order to improve the engine's stability, this study drew inspiration from the wave attenuation characteristics of the shell-shaped surface texture structure and added a multi-layer shell-shaped texture structure to the rear wall to reduce pressure fluctuations in the flow field at the rear of the nozzle . Based on the numerical simulation method, the effects of different bionic shell-shaped structures on jet morphology, wall pressure and engine thrust were compared and analyzed. The results show that the multi-layer bionic shell-shaped texture structure can effectively inhibit the occurrence of periodic phenomena such as bulge, necking, and return stroke in the rear flow field, so as to effectively reduce the pressure fluctuation in the rear flow field of the nozzle. In addition, when the momentum thrust is almost unchanged, it is found through calculations that during the initial stage of the jet, the suppression of thrust is not significant. After 0.005 seconds, the oscillation amplitude of the combined force of pressure difference thrust and back pressure thrust decreased by 22%, and the oscillation amplitude of the total thrust decreased by 20%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳型流控结构水下超声速飞行器射流的数值模拟
水下航行器发动机在过膨胀状态下工作时,喷管尾部流场压力的剧烈脉动会引起发动机推力的剧烈波动,导致发动机失稳。为了提高发动机的稳定性,本研究借鉴了壳形表面纹理结构的消波特性,在后壁面增加了多层壳形纹理结构,以减小喷管后部流场的压力波动。基于数值模拟方法,对比分析了不同仿生壳型结构对射流形态、壁面压力和发动机推力的影响。结果表明,多层仿生贝壳状纹理结构可以有效抑制后流场凸起、颈缩、回冲等周期性现象的发生,从而有效降低喷嘴后流场的压力波动。另外,在动量推力几乎不变的情况下,通过计算发现,在射流初始阶段,对推力的抑制并不显著。0.005秒后,压差推力和背压推力合力的振荡幅值减小22%,总推力的振荡幅值减小20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Scale Effects Investigation in Physical Modeling of Recirculating Shallow Flow Using Large Eddy Simulation Technique A Numerical Study on the Energy Dissipation Mechanisms of a Two-Stage Vertical Pump as Turbine Using Entropy Generation Theory Numerical Investigation of Oil–Air Flow Inside Tapered Roller Bearings with Oil Bath Lubrication Suppressing the Vortex Rope Oscillation and Pressure Fluctuations by the Air Admission in Propeller Hydro-Turbine Draft Tube Analysis of Near-wall Coherent Structure of Spiral Flow in Circular Pipe Based on Large Eddy Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1