Experimental Investigation of Energy Consumption for the Process of Initial Heating of a Substrate to the Fermentation Temperature

IF 0.3 Q4 ENERGY & FUELS Problemele Energeticii Regionale Pub Date : 2022-02-01 DOI:10.52254/1857-0070.2022.1-53.07
Nicolay Zablodskiy, Alexandr Spodoba, Mihail Spodoba
{"title":"Experimental Investigation of Energy Consumption for the Process of Initial Heating of a Substrate to the Fermentation Temperature","authors":"Nicolay Zablodskiy, Alexandr Spodoba, Mihail Spodoba","doi":"10.52254/1857-0070.2022.1-53.07","DOIUrl":null,"url":null,"abstract":"The aim of the work is to experimentally study the energy consumption for the process of initial heating of the substrate to the fermentation temperature in order to increase the energy efficiency of the biogas formation process. To achieve the goals set, a preparation and a series of experimental studies of the indicators of energy consumption for the process of initial heating of the substrate to the fermentation temperature were carried out. The working hypothesis is that the use of a heating cable built into the stirrer paddles reduces the energy costs for the process of initial heating of the substrate, increasing thus the energy efficiency of the biogas production. The most important result of the study was to obtain the dependences of the temperature change in the heating cable, substrate, reactor walls and energy consumption for heating and mixing during the initial heating of the substrate. The significance of the research results presented in the work lies in the fact that when using a heating cable built into the stirrer paddles, the process of initial heating of the substrate to the fermentation temperature occured faster on average by 16 minutes, and the amount of energy spent was also decreased on average by 6.6% for heating and 5.3% for mixing the substrate in a 40-liter biogas reactor. The implementation of the data obtained experimentally increased the energy efficiency of biogas production and the profitability of further processing of biogas into heat and electricity.","PeriodicalId":41974,"journal":{"name":"Problemele Energeticii Regionale","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Problemele Energeticii Regionale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52254/1857-0070.2022.1-53.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of the work is to experimentally study the energy consumption for the process of initial heating of the substrate to the fermentation temperature in order to increase the energy efficiency of the biogas formation process. To achieve the goals set, a preparation and a series of experimental studies of the indicators of energy consumption for the process of initial heating of the substrate to the fermentation temperature were carried out. The working hypothesis is that the use of a heating cable built into the stirrer paddles reduces the energy costs for the process of initial heating of the substrate, increasing thus the energy efficiency of the biogas production. The most important result of the study was to obtain the dependences of the temperature change in the heating cable, substrate, reactor walls and energy consumption for heating and mixing during the initial heating of the substrate. The significance of the research results presented in the work lies in the fact that when using a heating cable built into the stirrer paddles, the process of initial heating of the substrate to the fermentation temperature occured faster on average by 16 minutes, and the amount of energy spent was also decreased on average by 6.6% for heating and 5.3% for mixing the substrate in a 40-liter biogas reactor. The implementation of the data obtained experimentally increased the energy efficiency of biogas production and the profitability of further processing of biogas into heat and electricity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
底物初始加热至发酵温度过程能耗的实验研究
本工作的目的是通过实验研究底物初始加热至发酵温度过程的能量消耗,以提高沼气形成过程的能量效率。为了达到设定的目标,对底物初始加热至发酵温度过程的能耗指标进行了制备和一系列实验研究。工作假设是,使用内置在搅拌桨中的加热电缆减少了基材初始加热过程的能源成本,从而提高了沼气生产的能源效率。本研究最重要的结果是获得了在基材初始加热过程中加热电缆、基材、反应器壁的温度变化与加热和混合能耗的依赖关系。本研究结果的意义在于,使用搅拌桨内置加热电缆时,将底物初始加热至发酵温度的过程平均加快了16分钟,在40升的沼气反应器中,加热消耗的能量平均减少了6.6%,混合消耗的能量平均减少了5.3%。实验所得数据的实施提高了沼气生产的能源效率和进一步将沼气转化为热能和电能的盈利能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
38
期刊最新文献
Reduction of Voltage Fluctuations in Electrical Networks Supplying Motors with a Rapidly Changing Load by Installing Longitudinal Compensation Batteries Intelligent System of Relay Protection of Electrical Network 6-10 kV with the Implementation of Automatic Correction of the Operation Set Point Energy-Efficient Modes of Dehydration of Pome Fruits during Microwave Treatment in Combination with Convection Congestion Management Using an Optimized Deep Convolution Neural Network in Deregulated Environment Study of the Efficiency of Heat-Supply Systems with Steam Turbine CHP Plants, Taking into Account Changes in the Temperature of the Delivery Water during Transportation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1