Marina Vieira da Rosa, Miquéias Ferrão, Pedro Pequeno, A. Lima
{"title":"How do tree density and body size influence acoustic signals in Amazonian nurse frogs?","authors":"Marina Vieira da Rosa, Miquéias Ferrão, Pedro Pequeno, A. Lima","doi":"10.1080/09524622.2023.2204313","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Acoustic Adaptation Hypothesis (AAH) predicts that acoustic signals emitted at sites with greater vegetation density should have spectral and temporal characteristics that increase signal transmission, but there is a pleiotropism related to body size: large animals produce signals with lower frequency. We used 238 advertisement calls of 34 populations of Amazonian nurse frogs from two Amazonian rainforests with different vegetation density to test if tree density influences the evolution of acoustic parameters. We used PGLS to test for relationships between acoustic traits and phenotypic, environmental and geographic predictors. Spectral and temporal features of calls have an allometric relationship with body size. We found a novel quadratic relationship between note duration and body size. The allometric relationship between dominant frequency and body size and a direct effect of tree density indicates that the evolutionary trajectories of Amazonian nurse frogs follow a general macro-evolutionary pattern as in birds. The temporal features of calls have opposite evolutionary trajectories to those predicted by AAH; frogs from lower tree density environments emit longer notes and have higher note rates than those from denser-tree environments. Subtle differences between Amazonian forest types can drive acoustic diversification of temporal and spectral features of calls at micro-evolutionary scales.","PeriodicalId":55385,"journal":{"name":"Bioacoustics-The International Journal of Animal Sound and Its Recording","volume":"32 1","pages":"491 - 505"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioacoustics-The International Journal of Animal Sound and Its Recording","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/09524622.2023.2204313","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The Acoustic Adaptation Hypothesis (AAH) predicts that acoustic signals emitted at sites with greater vegetation density should have spectral and temporal characteristics that increase signal transmission, but there is a pleiotropism related to body size: large animals produce signals with lower frequency. We used 238 advertisement calls of 34 populations of Amazonian nurse frogs from two Amazonian rainforests with different vegetation density to test if tree density influences the evolution of acoustic parameters. We used PGLS to test for relationships between acoustic traits and phenotypic, environmental and geographic predictors. Spectral and temporal features of calls have an allometric relationship with body size. We found a novel quadratic relationship between note duration and body size. The allometric relationship between dominant frequency and body size and a direct effect of tree density indicates that the evolutionary trajectories of Amazonian nurse frogs follow a general macro-evolutionary pattern as in birds. The temporal features of calls have opposite evolutionary trajectories to those predicted by AAH; frogs from lower tree density environments emit longer notes and have higher note rates than those from denser-tree environments. Subtle differences between Amazonian forest types can drive acoustic diversification of temporal and spectral features of calls at micro-evolutionary scales.
期刊介绍:
Bioacoustics primarily publishes high-quality original research papers and reviews on sound communication in birds, mammals, amphibians, reptiles, fish, insects and other invertebrates, including the following topics :
-Communication and related behaviour-
Sound production-
Hearing-
Ontogeny and learning-
Bioacoustics in taxonomy and systematics-
Impacts of noise-
Bioacoustics in environmental monitoring-
Identification techniques and applications-
Recording and analysis-
Equipment and techniques-
Ultrasound and infrasound-
Underwater sound-
Bioacoustical sound structures, patterns, variation and repertoires