{"title":"EXPRESS: Correcting Regressor-Endogeneity Bias via Instrument-free Joint Estimation using Semiparametric Odds Ratio Models","authors":"Y. Qian, Hui Xie","doi":"10.1177/00222437231195577","DOIUrl":null,"url":null,"abstract":"Endogenous regressors can lead to biased estimates for causal effects using methods assuming regressor–error independence. To correct for endogeneity bias, the authors propose a new method that accounts for the regressor–error dependence using flexible semiparametric odds ratio conditional models; the approach requires neither parametric distributional assumptions nor tuning parameters for modeling endogenous regressors' distributions conditional on the error term and exogenous regressors. Inference is achieved via optimizing the profile likelihood concentrating on the parameters of interest. The proposed approach requires no use of instrumental variables (IVs), observed or latent, that must satisfy the stringent condition of exclusion restriction. Nonnormally distributed endogenous regressors are required for model identification with a normal error distribution. The approach's exibility in capturing regressor-error dependence increases the capability of Ivfree endogeneity correction and provides opportunities to improve the accuracy of causal effect estimation. Unlike existing IV-free methods, the proposed approach can handle discrete endogenous regressors with few levels, such as binary regressors or count regressors with small means, and is thus applicable to a plethora of applications involving such regressors. The authors demonstrate the versatility of the approach for binary, count, and continuous endogenous regressors using comprehensive simulation studies and an empirical data.","PeriodicalId":48465,"journal":{"name":"Journal of Marketing Research","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marketing Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/00222437231195577","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
Endogenous regressors can lead to biased estimates for causal effects using methods assuming regressor–error independence. To correct for endogeneity bias, the authors propose a new method that accounts for the regressor–error dependence using flexible semiparametric odds ratio conditional models; the approach requires neither parametric distributional assumptions nor tuning parameters for modeling endogenous regressors' distributions conditional on the error term and exogenous regressors. Inference is achieved via optimizing the profile likelihood concentrating on the parameters of interest. The proposed approach requires no use of instrumental variables (IVs), observed or latent, that must satisfy the stringent condition of exclusion restriction. Nonnormally distributed endogenous regressors are required for model identification with a normal error distribution. The approach's exibility in capturing regressor-error dependence increases the capability of Ivfree endogeneity correction and provides opportunities to improve the accuracy of causal effect estimation. Unlike existing IV-free methods, the proposed approach can handle discrete endogenous regressors with few levels, such as binary regressors or count regressors with small means, and is thus applicable to a plethora of applications involving such regressors. The authors demonstrate the versatility of the approach for binary, count, and continuous endogenous regressors using comprehensive simulation studies and an empirical data.
期刊介绍:
JMR is written for those academics and practitioners of marketing research who need to be in the forefront of the profession and in possession of the industry"s cutting-edge information. JMR publishes articles representing the entire spectrum of research in marketing. The editorial content is peer-reviewed by an expert panel of leading academics. Articles address the concepts, methods, and applications of marketing research that present new techniques for solving marketing problems; contribute to marketing knowledge based on the use of experimental, descriptive, or analytical techniques; and review and comment on the developments and concepts in related fields that have a bearing on the research industry and its practices.