Auto‐segmentation of the clinical target volume using a domain‐adversarial neural network in patients with gynaecological cancer undergoing postoperative vaginal brachytherapy

Q4 Medicine Precision Radiation Oncology Pub Date : 2023-08-07 DOI:10.1002/pro6.1206
Junfang Yan, Xue Qin, C. Qiao, Jiawei Zhu, Lina Song, Mi Yang, Shaobin Wang, Lu Bai, Zhikai Liu, J. Qiu
{"title":"Auto‐segmentation of the clinical target volume using a domain‐adversarial neural network in patients with gynaecological cancer undergoing postoperative vaginal brachytherapy","authors":"Junfang Yan, Xue Qin, C. Qiao, Jiawei Zhu, Lina Song, Mi Yang, Shaobin Wang, Lu Bai, Zhikai Liu, J. Qiu","doi":"10.1002/pro6.1206","DOIUrl":null,"url":null,"abstract":"For postoperative vaginal brachytherapy (POVBT), the diversity of applicators complicates the creation of a generalized auto‐segmentation model, and creating models for each applicator seems difficult due to the large amount of data required. We construct an auto‐segmentation model of POVBT using small data via domain‐adversarial neural networks (DANNs).","PeriodicalId":32406,"journal":{"name":"Precision Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pro6.1206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

For postoperative vaginal brachytherapy (POVBT), the diversity of applicators complicates the creation of a generalized auto‐segmentation model, and creating models for each applicator seems difficult due to the large amount of data required. We construct an auto‐segmentation model of POVBT using small data via domain‐adversarial neural networks (DANNs).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在接受阴道术后近距离放疗的妇科癌症患者中,使用域对抗神经网络进行临床靶体积的自动分割
对于术后阴道近距离放射治疗(POVBT),应用程序的多样性使通用自动分割模型的创建变得复杂,并且由于需要大量数据,为每个应用程序创建模型似乎很困难。我们通过领域对抗性神经网络(DANN)使用小数据构建了POVBT的自动分割模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Precision Radiation Oncology
Precision Radiation Oncology Medicine-Oncology
CiteScore
1.20
自引率
0.00%
发文量
32
审稿时长
13 weeks
期刊最新文献
Treatment of Sinonasal Teratocarcinosarcoma: A case report Stereotactic body radiotherapy takes on Lung Oligometastases: Latest breakthroughs Clinical outcomes of multisite moderate to high dose radiotherapy for patients with metastatic melanoma Stereotactic radiotherapy: An educational narrative review Clinical application of high‐LET radiotherapy combined with immunotherapy in malignant tumors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1