Pituitary lineage differentiation from human-induced pluripotent stem cells in 2D and 3D cultures.

IF 2.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Stem cells and development Pub Date : 2022-04-05 DOI:10.1089/scd.2021.0354
Yu Zhou, Robert R A Wilson, Abinav Udaiyar, J. McLemore, H. Sadri-Ardekani, T. Criswell
{"title":"Pituitary lineage differentiation from human-induced pluripotent stem cells in 2D and 3D cultures.","authors":"Yu Zhou, Robert R A Wilson, Abinav Udaiyar, J. McLemore, H. Sadri-Ardekani, T. Criswell","doi":"10.1089/scd.2021.0354","DOIUrl":null,"url":null,"abstract":"Despite its small size, the pituitary gland plays a central role in the maintenance of normal homeostasis of most physiological systems through its regulation of the function of other endocrine glands. The complexity of the anterior pituitary gland, due to its composition of several different hormone-secreting cell types, begets a plethora of disorders and pathologies due primarily to hypo- or hyper-secretion of hormones. The gonadotrophs, which make up less than 5% of the total number of cells in the anterior pituitary, serve to regulate gonad development and sexual reproduction in males and females. Despite the increased research on the development of models to study pituitary function within the last decade, a model specifically designed to study the gonadotrophs is still lacking. The development of organoid technology has facilitated research in the field of personalized medicine and physiological testing using patient-derived cells. The ability to produce pituitary organoids would allow researchers to construct an in vitro model of the human hypothalamic-pituitary-gonadal (HPG) or -adrenal (HPA) axis to use in further fertility or endocrine research. The application of this technology in patients could revolutionize the treatment of infertility and a variety of neuroendocrine disorders. The impetus behind this stud was to develop a pituitary-like organoid consisting only of gonadotrophs. Despite the lack of success in differentiating gonadotrophs, pituitary-like organoids were differentiated from human-induced pluripotent stem cells. In addition, 2D and 3D differentiated cultures were characterized and compared to human adult cadaveric pituitary tissue.","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2021.0354","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 6

Abstract

Despite its small size, the pituitary gland plays a central role in the maintenance of normal homeostasis of most physiological systems through its regulation of the function of other endocrine glands. The complexity of the anterior pituitary gland, due to its composition of several different hormone-secreting cell types, begets a plethora of disorders and pathologies due primarily to hypo- or hyper-secretion of hormones. The gonadotrophs, which make up less than 5% of the total number of cells in the anterior pituitary, serve to regulate gonad development and sexual reproduction in males and females. Despite the increased research on the development of models to study pituitary function within the last decade, a model specifically designed to study the gonadotrophs is still lacking. The development of organoid technology has facilitated research in the field of personalized medicine and physiological testing using patient-derived cells. The ability to produce pituitary organoids would allow researchers to construct an in vitro model of the human hypothalamic-pituitary-gonadal (HPG) or -adrenal (HPA) axis to use in further fertility or endocrine research. The application of this technology in patients could revolutionize the treatment of infertility and a variety of neuroendocrine disorders. The impetus behind this stud was to develop a pituitary-like organoid consisting only of gonadotrophs. Despite the lack of success in differentiating gonadotrophs, pituitary-like organoids were differentiated from human-induced pluripotent stem cells. In addition, 2D and 3D differentiated cultures were characterized and compared to human adult cadaveric pituitary tissue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在2D和3D培养物中从人类诱导的多能干细胞分化的垂体谱系。
尽管垂体体积较小,但它通过调节其他内分泌腺的功能,在维持大多数生理系统的正常稳态中发挥着核心作用。垂体前叶的复杂性,由于其由几种不同的激素分泌细胞类型组成,导致了大量的疾病和病理,主要是由于激素分泌不足或分泌过多。促性腺激素占垂体前叶细胞总数的不到5%,用于调节雄性和雌性的性腺发育和性生殖。尽管在过去十年中,对垂体功能研究模型的开发研究有所增加,但仍缺乏专门研究促性腺激素的模型。类器官技术的发展促进了使用患者来源细胞进行个性化医学和生理测试领域的研究。产生垂体类器官的能力将使研究人员能够构建人类下丘脑-垂体-性腺(HPG)或肾上腺(HPA)轴的体外模型,用于进一步的生育或内分泌研究。这项技术在患者身上的应用可能会彻底改变不孕不育和各种神经内分泌疾病的治疗。这项研究的动力是发展出一种仅由促性腺激素组成的垂体样器官。尽管在分化促性腺激素方面缺乏成功,但垂体样器官是从人类诱导的多能干细胞分化而来的。此外,对2D和3D分化培养物进行了表征,并与成人尸体垂体组织进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem cells and development
Stem cells and development 医学-细胞与组织工程
CiteScore
7.80
自引率
2.50%
发文量
69
审稿时长
3 months
期刊介绍: Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings. Stem Cells and Development coverage includes: Embryogenesis and adult counterparts of this process Physical processes linking stem cells, primary cell function, and structural development Hypotheses exploring the relationship between genotype and phenotype Development of vasculature, CNS, and other germ layer development and defects Pluripotentiality of embryonic and somatic stem cells The role of genetic and epigenetic factors in development
期刊最新文献
Applications of Plant-made Fibroblast Growth Factor for Human Pluripotent Stem Cells Retinal Organoid Models Show Heterozygous Rhodopsin Mutation Favors Endoplasmic Reticulum Stress-Induced Apoptosis in Rods. MicroRNAs as Prognostic Markers for Chondrogenic Differentiation Potential of Equine Mesenchymal Stromal Cells. Mesenchymal Stromal Cells Regulate M1/M2 Macrophage Polarization in Mice with Immune Thrombocytopenia. The Induction of Parathyroid Cell Differentiation from Human Induced Pluripotent Stem Cells Promoted Via TGF-α/EGFR Signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1