Yu Zhou, Robert R A Wilson, Abinav Udaiyar, J. McLemore, H. Sadri-Ardekani, T. Criswell
{"title":"Pituitary lineage differentiation from human-induced pluripotent stem cells in 2D and 3D cultures.","authors":"Yu Zhou, Robert R A Wilson, Abinav Udaiyar, J. McLemore, H. Sadri-Ardekani, T. Criswell","doi":"10.1089/scd.2021.0354","DOIUrl":null,"url":null,"abstract":"Despite its small size, the pituitary gland plays a central role in the maintenance of normal homeostasis of most physiological systems through its regulation of the function of other endocrine glands. The complexity of the anterior pituitary gland, due to its composition of several different hormone-secreting cell types, begets a plethora of disorders and pathologies due primarily to hypo- or hyper-secretion of hormones. The gonadotrophs, which make up less than 5% of the total number of cells in the anterior pituitary, serve to regulate gonad development and sexual reproduction in males and females. Despite the increased research on the development of models to study pituitary function within the last decade, a model specifically designed to study the gonadotrophs is still lacking. The development of organoid technology has facilitated research in the field of personalized medicine and physiological testing using patient-derived cells. The ability to produce pituitary organoids would allow researchers to construct an in vitro model of the human hypothalamic-pituitary-gonadal (HPG) or -adrenal (HPA) axis to use in further fertility or endocrine research. The application of this technology in patients could revolutionize the treatment of infertility and a variety of neuroendocrine disorders. The impetus behind this stud was to develop a pituitary-like organoid consisting only of gonadotrophs. Despite the lack of success in differentiating gonadotrophs, pituitary-like organoids were differentiated from human-induced pluripotent stem cells. In addition, 2D and 3D differentiated cultures were characterized and compared to human adult cadaveric pituitary tissue.","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem cells and development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/scd.2021.0354","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 6
Abstract
Despite its small size, the pituitary gland plays a central role in the maintenance of normal homeostasis of most physiological systems through its regulation of the function of other endocrine glands. The complexity of the anterior pituitary gland, due to its composition of several different hormone-secreting cell types, begets a plethora of disorders and pathologies due primarily to hypo- or hyper-secretion of hormones. The gonadotrophs, which make up less than 5% of the total number of cells in the anterior pituitary, serve to regulate gonad development and sexual reproduction in males and females. Despite the increased research on the development of models to study pituitary function within the last decade, a model specifically designed to study the gonadotrophs is still lacking. The development of organoid technology has facilitated research in the field of personalized medicine and physiological testing using patient-derived cells. The ability to produce pituitary organoids would allow researchers to construct an in vitro model of the human hypothalamic-pituitary-gonadal (HPG) or -adrenal (HPA) axis to use in further fertility or endocrine research. The application of this technology in patients could revolutionize the treatment of infertility and a variety of neuroendocrine disorders. The impetus behind this stud was to develop a pituitary-like organoid consisting only of gonadotrophs. Despite the lack of success in differentiating gonadotrophs, pituitary-like organoids were differentiated from human-induced pluripotent stem cells. In addition, 2D and 3D differentiated cultures were characterized and compared to human adult cadaveric pituitary tissue.
期刊介绍:
Stem Cells and Development is globally recognized as the trusted source for critical, even controversial coverage of emerging hypotheses and novel findings. With a focus on stem cells of all tissue types and their potential therapeutic applications, the Journal provides clinical, basic, and translational scientists with cutting-edge research and findings.
Stem Cells and Development coverage includes:
Embryogenesis and adult counterparts of this process
Physical processes linking stem cells, primary cell function, and structural development
Hypotheses exploring the relationship between genotype and phenotype
Development of vasculature, CNS, and other germ layer development and defects
Pluripotentiality of embryonic and somatic stem cells
The role of genetic and epigenetic factors in development