Environmental Factors Affecting the Community of Methane-oxidizing Bacteria

IF 2.1 4区 环境科学与生态学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbes and Environments Pub Date : 2022-03-26 DOI:10.1264/jsme2.ME21074
Hiromi Kambara, Takahiro Shinno, Norihisa Matsuura, S. Matsushita, Y. Aoi, T. Kindaichi, N. Ozaki, A. Ohashi
{"title":"Environmental Factors Affecting the Community of Methane-oxidizing Bacteria","authors":"Hiromi Kambara, Takahiro Shinno, Norihisa Matsuura, S. Matsushita, Y. Aoi, T. Kindaichi, N. Ozaki, A. Ohashi","doi":"10.1264/jsme2.ME21074","DOIUrl":null,"url":null,"abstract":"Methane-oxidizing bacteria (MOB) are ubiquitous and play an important role in the mitigation of global warming by reducing methane. MOB are commonly classified into Type I and Type II, belonging to Gammaproteobacteria and Alphaproteobacteria, respectively, and the diversity of MOB has been examined. However, limited information is currently available on favorable environments for the respective MOB. To investigate the environmental factors affecting the dominant type in the MOB community, we performed MOB enrichment using down-flow hanging sponge reactors under 38 different environmental conditions with a wide range of methane (0.01–80%) and ammonium concentrations (0.001–2,000 mg N L–1) and pH 4–7. Enrichment results revealed that pH was a crucial factor influencing the MOB type enriched. Type II was dominantly enriched at low pH (4–5), whereas Type I was dominant around neutral pH (6–7). However, there were some unusual cultivated biomass samples. Even though high methane oxidation activity was observed, very few or zero conventional MOB were detected using common FISH probes and primer sets for the 16S rRNA gene and pmoA gene amplification. Mycobacterium mostly dominated the microbial community in the biomass cultivated at very high NH4+ concentrations, strongly implying that it exhibits methane oxidation activity. Collectively, the present results revealed the presence of many unknown phylogenetic groups with the capacity for methane oxidation other than the reported MOB.","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME21074","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Methane-oxidizing bacteria (MOB) are ubiquitous and play an important role in the mitigation of global warming by reducing methane. MOB are commonly classified into Type I and Type II, belonging to Gammaproteobacteria and Alphaproteobacteria, respectively, and the diversity of MOB has been examined. However, limited information is currently available on favorable environments for the respective MOB. To investigate the environmental factors affecting the dominant type in the MOB community, we performed MOB enrichment using down-flow hanging sponge reactors under 38 different environmental conditions with a wide range of methane (0.01–80%) and ammonium concentrations (0.001–2,000 mg N L–1) and pH 4–7. Enrichment results revealed that pH was a crucial factor influencing the MOB type enriched. Type II was dominantly enriched at low pH (4–5), whereas Type I was dominant around neutral pH (6–7). However, there were some unusual cultivated biomass samples. Even though high methane oxidation activity was observed, very few or zero conventional MOB were detected using common FISH probes and primer sets for the 16S rRNA gene and pmoA gene amplification. Mycobacterium mostly dominated the microbial community in the biomass cultivated at very high NH4+ concentrations, strongly implying that it exhibits methane oxidation activity. Collectively, the present results revealed the presence of many unknown phylogenetic groups with the capacity for methane oxidation other than the reported MOB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
影响甲烷氧化菌群落的环境因素
甲烷氧化菌(MOB)普遍存在,在通过减少甲烷来减缓全球变暖方面发挥着重要作用。MOB通常分为I型和II型,分别属于Gammaproteobacteria和Alphaproteobacteria,目前已经对MOB的多样性进行了研究。然而,目前关于各自MOB有利环境的信息有限。为了研究影响MOB群落优势类型的环境因素,在38种不同的环境条件下,在甲烷(0.01 ~ 80%)和铵浓度(0.001 ~ 2000 mg N - L-1)和pH 4 ~ 7范围内,采用下流式悬挂海绵反应器对MOB进行富集。富集结果表明,pH是影响MOB型富集的关键因素。II型主要富集在低pH(4-5),而I型主要富集在中性pH(6-7)。然而,有一些不寻常的栽培生物量样本。尽管观察到较高的甲烷氧化活性,但使用常见的FISH探针和16S rRNA基因和pmoA基因扩增引物组检测到的传统MOB很少或为零。高浓度NH4+培养的生物量中分枝杆菌占主导地位,表明分枝杆菌具有甲烷氧化活性。总的来说,目前的结果揭示了除了报道的MOB之外,存在许多未知的具有甲烷氧化能力的系统发育群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbes and Environments
Microbes and Environments 生物-生物工程与应用微生物
CiteScore
4.10
自引率
13.60%
发文量
66
审稿时长
3 months
期刊介绍: Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.
期刊最新文献
Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. Gustatory Responsiveness of Honey Bees Colonized with a Defined or Conventional Gut Microbiota. DiGAlign: Versatile and Interactive Visualization of Sequence Alignment for Comparative Genomics. Global Distribution and Diversity of Marine Parmales. Quest for Nitrous Oxide-reducing Bacteria Present in an Anammox Biofilm Fed with Nitrous Oxide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1