Abdul-Fatawu Seini Yussif, Elvis Twumasi, E. Frimpong
{"title":"Performance Enhancement of Elephant Herding Optimization Algorithm Using Modified Update Operators","authors":"Abdul-Fatawu Seini Yussif, Elvis Twumasi, E. Frimpong","doi":"10.25077/jnte.v12n2.1124.2023","DOIUrl":null,"url":null,"abstract":"This research paper presents a modified version of the Elephant Herding Optimization (EHO) algorithm, referred to as the Modified Elephant Herding Optimization (MEHO) algorithm, to enhance its global performance. The focus of this study lies in improving the balance between exploration and exploitation within the algorithm through the modification of two key operators: the matriarch updating operator and the separation updating operator. By reframing the equations governing these operators, the proposed modifications aim to enhance the algorithm’s ability to discover optimal global solutions. The MEHO algorithm is implemented in the MATLAB environment, utilizing MATLAB R2019a. To assess its efficacy, the algorithm is subjected to rigorous testing on various standard benchmark functions. Comparative evaluations are conducted against the original EHO algorithm, as well as other established optimization algorithms, namely the Improved Elephant Herding Optimization (IEHO) algorithm, Particle Swarm Optimization (PSO) algorithm, and Biogeography-Based Optimization (BBO) algorithm. The evaluation metrics primarily focus on the algorithms’ capacity to produce the best global solution for the tested functions. The proposed MEHO algorithm outperformed the other algorithms on 75% of the tested functions, and 62.5% under two specific test scenarios. The findings highlight the effectiveness of the proposed modification in enhancing the global performance of the Elephant Herding Optimization algorithm. Overall, this work contributes to the field of optimization algorithms by presenting a refined version of the EHO algorithm that exhibits improved global search capabilities.","PeriodicalId":30660,"journal":{"name":"Jurnal Nasional Teknik Elektro","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jnte.v12n2.1124.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research paper presents a modified version of the Elephant Herding Optimization (EHO) algorithm, referred to as the Modified Elephant Herding Optimization (MEHO) algorithm, to enhance its global performance. The focus of this study lies in improving the balance between exploration and exploitation within the algorithm through the modification of two key operators: the matriarch updating operator and the separation updating operator. By reframing the equations governing these operators, the proposed modifications aim to enhance the algorithm’s ability to discover optimal global solutions. The MEHO algorithm is implemented in the MATLAB environment, utilizing MATLAB R2019a. To assess its efficacy, the algorithm is subjected to rigorous testing on various standard benchmark functions. Comparative evaluations are conducted against the original EHO algorithm, as well as other established optimization algorithms, namely the Improved Elephant Herding Optimization (IEHO) algorithm, Particle Swarm Optimization (PSO) algorithm, and Biogeography-Based Optimization (BBO) algorithm. The evaluation metrics primarily focus on the algorithms’ capacity to produce the best global solution for the tested functions. The proposed MEHO algorithm outperformed the other algorithms on 75% of the tested functions, and 62.5% under two specific test scenarios. The findings highlight the effectiveness of the proposed modification in enhancing the global performance of the Elephant Herding Optimization algorithm. Overall, this work contributes to the field of optimization algorithms by presenting a refined version of the EHO algorithm that exhibits improved global search capabilities.