Research on Conditions and Influence Factors of an Acoustic Wave Acting as a Plane Wave in Tire Acoustic Cavity

IF 2.5 4区 综合性期刊 Q2 CHEMISTRY, MULTIDISCIPLINARY Applied Sciences-Basel Pub Date : 2023-09-07 DOI:10.3390/app131810078
Xiaojun Hu, Xiandong Liu, Yingchun Shan, Tian He
{"title":"Research on Conditions and Influence Factors of an Acoustic Wave Acting as a Plane Wave in Tire Acoustic Cavity","authors":"Xiaojun Hu, Xiandong Liu, Yingchun Shan, Tian He","doi":"10.3390/app131810078","DOIUrl":null,"url":null,"abstract":"Tire acoustic cavity resonance noise (TACRN) contributes significantly to the interior noise of electric cars and passenger cars with lower powertrain noise, which affects the comfort of the ride. To suppress TACRN effectively, it is crucial to clarify the characteristics of TACRN. In previous studies, the acoustic wave in the tire acoustic cavity is straightforwardly assumed to be the plane wave for convenience. In fact, there exist strict conditions for the acoustic wave propagating in the pipeline to act as a plane wave. The aim of this paper is to make the characteristics and evolution of acoustic waves in tire acoustic cavities clear. To do so, a simplified model of the tire cavity is established, and the sound field distribution and the acoustic wave propagation characteristics in the tire cavity are analyzed based on the theory of acoustic waveguide. Then, the existence ranges of higher-order waves (non-plane waves), the conditions of an acoustic wave evolving into a plane wave, and the frequency range of a plane wave are investigated. Finally, the characteristics and evolution law of an acoustic wave in a tire acoustic cavity are obtained. The work in this paper may deepen the understanding of the characteristics and mechanism of acoustic waves in the tire cavity and be helpful and meaningful for analyzing and suppressing TACRN. Therefore, it is of practical significance to reduce TACRN transmitted to the vehicle and improve the sound quality inside the vehicle.","PeriodicalId":48760,"journal":{"name":"Applied Sciences-Basel","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences-Basel","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/app131810078","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Tire acoustic cavity resonance noise (TACRN) contributes significantly to the interior noise of electric cars and passenger cars with lower powertrain noise, which affects the comfort of the ride. To suppress TACRN effectively, it is crucial to clarify the characteristics of TACRN. In previous studies, the acoustic wave in the tire acoustic cavity is straightforwardly assumed to be the plane wave for convenience. In fact, there exist strict conditions for the acoustic wave propagating in the pipeline to act as a plane wave. The aim of this paper is to make the characteristics and evolution of acoustic waves in tire acoustic cavities clear. To do so, a simplified model of the tire cavity is established, and the sound field distribution and the acoustic wave propagation characteristics in the tire cavity are analyzed based on the theory of acoustic waveguide. Then, the existence ranges of higher-order waves (non-plane waves), the conditions of an acoustic wave evolving into a plane wave, and the frequency range of a plane wave are investigated. Finally, the characteristics and evolution law of an acoustic wave in a tire acoustic cavity are obtained. The work in this paper may deepen the understanding of the characteristics and mechanism of acoustic waves in the tire cavity and be helpful and meaningful for analyzing and suppressing TACRN. Therefore, it is of practical significance to reduce TACRN transmitted to the vehicle and improve the sound quality inside the vehicle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轮胎声腔中声波作为平面波作用的条件及影响因素研究
轮胎声腔共振噪声(TACRN)对电动汽车和动力总成噪声较低的乘用车的内部噪声有很大影响,从而影响乘坐的舒适性。为了有效抑制TACRN,阐明TACRN的特性至关重要。在以前的研究中,为了方便起见,直接将轮胎声腔内的声波假设为平面波。事实上,在管道中传播的声波作为平面波存在严格的条件。本文的目的是弄清轮胎声腔中声波的特征和演变过程。为此,建立了轮胎空腔的简化模型,并基于声波导理论分析了轮胎空腔中的声场分布和声波传播特性。然后,研究了高阶波(非平面波)的存在范围、声波演化为平面波的条件以及平面波的频率范围。最后,得到了轮胎声腔中声波的特性和演化规律。本文的工作有助于加深对轮胎胎腔声波特性和机理的理解,对分析和抑制TACRN有一定的帮助和意义。因此,减少传输到车内的TACRN,提高车内音质具有重要的现实意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Sciences-Basel
Applied Sciences-Basel CHEMISTRY, MULTIDISCIPLINARYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.30
自引率
11.10%
发文量
10882
期刊介绍: Applied Sciences (ISSN 2076-3417) provides an advanced forum on all aspects of applied natural sciences. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Application of Digital Holographic Imaging to Monitor Real-Time Cardiomyocyte Hypertrophy Dynamics in Response to Norepinephrine Stimulation. Study on Shear Resistance and Structural Performance of Corrugated Steel–Concrete Composite Deck Clustering Analysis of Wind Turbine Alarm Sequences Based on Domain Knowledge-Fused Word2vec Unraveling Functional Dysphagia: A Game-Changing Automated Machine-Learning Diagnostic Approach Spatial Overlay Analysis of Geochemical Singularity Index α-Value of Porphyry Cu Deposit in Gangdese Metallogenic Belt, Tibet, Western China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1