YaLu Fu, Qingqing Zhou, M. Yu, H. Su, Qilong Guo, Xianxu Yuan
{"title":"Effects of groove distributions on supersonic turbulent channel flows","authors":"YaLu Fu, Qingqing Zhou, M. Yu, H. Su, Qilong Guo, Xianxu Yuan","doi":"10.1080/14685248.2023.2224019","DOIUrl":null,"url":null,"abstract":"This paper investigates the influences of the distribution of the grooves on the wall on the turbulent statistics, transport of turbulent kinetic energy, and flow structures in supersonic turbulent channel flows at the bulk Mach number of 3.0 by performing direct numerical simulations. It is found that the existence of the grooves leads to the enhancement of the turbulent kinetic energy close to the wall and the abatement thereof above the buffer layer. The density and temperature fluctuations are also enhanced, but only within the buffer layer, above which the influences of the grooves can be disregarded. The pressure fluctuations, however, are significantly increased, which is attributed to the radiated acoustic waves from the wall generated by the disturbances on the wall. Such inference is substantiated by the fact that the inclination angles of the phase averaged pressure are related to the Mach number. Nevertheless, the acoustic and dynamic processes seem to be decoupled, leading to insignificant pressure-dilatation terms in the transport of turbulent kinetic energy.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"24 1","pages":"349 - 366"},"PeriodicalIF":1.5000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2224019","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the influences of the distribution of the grooves on the wall on the turbulent statistics, transport of turbulent kinetic energy, and flow structures in supersonic turbulent channel flows at the bulk Mach number of 3.0 by performing direct numerical simulations. It is found that the existence of the grooves leads to the enhancement of the turbulent kinetic energy close to the wall and the abatement thereof above the buffer layer. The density and temperature fluctuations are also enhanced, but only within the buffer layer, above which the influences of the grooves can be disregarded. The pressure fluctuations, however, are significantly increased, which is attributed to the radiated acoustic waves from the wall generated by the disturbances on the wall. Such inference is substantiated by the fact that the inclination angles of the phase averaged pressure are related to the Mach number. Nevertheless, the acoustic and dynamic processes seem to be decoupled, leading to insignificant pressure-dilatation terms in the transport of turbulent kinetic energy.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.