{"title":"Non-existence of some 4-dimensional Griesmer codes over finite fields","authors":"Kazuki Kumegawa, T. Maruta","doi":"10.13069/jacodesmath.427968","DOIUrl":null,"url":null,"abstract":"We prove the non--existence of $[g_q(4,d),4,d]_q$ codes for $d=2q^3-rq^2-2q+1$ for $3 \\le r \\le (q+1)/2$, $q \\ge 5$; $d=2q^3-3q^2-3q+1$ for $q \\ge 9$; $d=2q^3-4q^2-3q+1$ for $q \\ge 9$; and $d=q^3-q^2-rq-2$ with $r=4, 5$ or $6$ for $q \\ge 9$, where $g_q(4,d)=\\sum_{i=0}^{3} \\left\\lceil d/q^i \\right\\rceil$. This yields that $n_q(4,d) = g_q(4,d)+1$ for $2q^3-3q^2-3q+1 \\le d \\le 2q^3-3q^2$, $2q^3-5q^2-2q+1 \\le d \\le 2q^3-5q^2$ and $q^3-q^2-rq-2 \\le d \\le q^3-q^2-rq$ with $4 \\le r \\le 6$ for $q \\ge 9$ and that $n_q(4,d) \\ge g_q(4,d)+1$ for $2q^3-rq^2-2q+1 \\le d \\le 2q^3-rq^2-q$ for $3 \\le r \\le (q+1)/2$, $q \\ge 5$ and $2q^3-4q^2-3q+1 \\le d \\le 2q^3-4q^2-2q$ for $q \\ge 9$, where $n_q(4,d)$ denotes the minimum length $n$ for which an $[n,4,d]_q$ code exists.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/jacodesmath.427968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
We prove the non--existence of $[g_q(4,d),4,d]_q$ codes for $d=2q^3-rq^2-2q+1$ for $3 \le r \le (q+1)/2$, $q \ge 5$; $d=2q^3-3q^2-3q+1$ for $q \ge 9$; $d=2q^3-4q^2-3q+1$ for $q \ge 9$; and $d=q^3-q^2-rq-2$ with $r=4, 5$ or $6$ for $q \ge 9$, where $g_q(4,d)=\sum_{i=0}^{3} \left\lceil d/q^i \right\rceil$. This yields that $n_q(4,d) = g_q(4,d)+1$ for $2q^3-3q^2-3q+1 \le d \le 2q^3-3q^2$, $2q^3-5q^2-2q+1 \le d \le 2q^3-5q^2$ and $q^3-q^2-rq-2 \le d \le q^3-q^2-rq$ with $4 \le r \le 6$ for $q \ge 9$ and that $n_q(4,d) \ge g_q(4,d)+1$ for $2q^3-rq^2-2q+1 \le d \le 2q^3-rq^2-q$ for $3 \le r \le (q+1)/2$, $q \ge 5$ and $2q^3-4q^2-3q+1 \le d \le 2q^3-4q^2-2q$ for $q \ge 9$, where $n_q(4,d)$ denotes the minimum length $n$ for which an $[n,4,d]_q$ code exists.