Study on Optical Positioning Using Experimental Visible Light Communication System

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computation Pub Date : 2023-08-14 DOI:10.3390/computation11080161
Nikoleta Vitsi, A. Stassinakis, N. A. Androutsos, G. D. Roumelas, G. K. Varotsos, K. Aidinis, H. Nistazakis
{"title":"Study on Optical Positioning Using Experimental Visible Light Communication System","authors":"Nikoleta Vitsi, A. Stassinakis, N. A. Androutsos, G. D. Roumelas, G. K. Varotsos, K. Aidinis, H. Nistazakis","doi":"10.3390/computation11080161","DOIUrl":null,"url":null,"abstract":"Visible light positioning systems (VLP) have attracted significant commercial and research interest because of the many advantages they possess over other applications such as radio frequency (RF) positioning systems. In this work, an experimental configuration of an indoor VLP system based on the well-known Lambertian light emission, is investigated. The corresponding results are also presented, and show that the system retains high enough accuracy to be operational, even in cases of low transmitted power and high background noise.","PeriodicalId":52148,"journal":{"name":"Computation","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11080161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Visible light positioning systems (VLP) have attracted significant commercial and research interest because of the many advantages they possess over other applications such as radio frequency (RF) positioning systems. In this work, an experimental configuration of an indoor VLP system based on the well-known Lambertian light emission, is investigated. The corresponding results are also presented, and show that the system retains high enough accuracy to be operational, even in cases of low transmitted power and high background noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于实验可见光通信系统的光学定位研究
可见光定位系统(VLP)由于其与射频(RF)定位系统等其他应用相比具有许多优势而引起了重大的商业和研究兴趣。在这项工作中,研究了一个基于朗伯光发射的室内VLP系统的实验配置。结果表明,即使在低传输功率和高背景噪声的情况下,该系统仍能保持足够高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computation
Computation Mathematics-Applied Mathematics
CiteScore
3.50
自引率
4.50%
发文量
201
审稿时长
8 weeks
期刊介绍: Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.
期刊最新文献
Analytical and Numerical Investigation of Two-Dimensional Heat Transfer with Periodic Boundary Conditions Enhancement of Machine-Learning-Based Flash Calculations near Criticality Using a Resampling Approach Corporate Bankruptcy Prediction Models: A Comparative Study for the Construction Sector in Greece Analysis of Effectiveness of Combined Surface Treatment Methods for Structural Parts with Holes to Enhance Their Fatigue Life A New Mixed Fractional Derivative with Applications in Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1