{"title":"Polarity-driven laminar pattern formation by lateral-inhibition in 2D and 3D bilayer geometries","authors":"Joshua W Moore, T. Dale, T. Woolley","doi":"10.1093/imamat/hxac011","DOIUrl":null,"url":null,"abstract":"\n Fine-grain patterns produced by juxtacrine signalling have previously been studied using static monolayers as cellular domains. However, analytic results are usually restricted to a few cells due to the algebraic complexity of non-linear dynamical systems. Motivated by concentric patterning of Notch expression observed in the mammary gland, we combine concepts from graph and control theory to represent cellular connectivity and behaviour. The resulting theoretical framework allows us to exploit the symmetry of multicellular bilayer structures in 2D and 3D, thereby deriving analytical conditions that drive the dynamical system to form laminar patterns, consistent with the formation of cell polarity by activator localization. Critically, the patterning conditions are independent of the precise dynamical details, thus the framework allows for generality in understanding the influence of cellular geometry and signal polarity on patterning using lateral-inhibition systems. Applying the analytic conditions to mammary organoids suggests that intense cell signalling polarity is required for the maintenance of stratified cell types within a static bilayer using a lateral-inhibition mechanism. Furthermore, by employing 2D and 3D cell-based models, we highlight that the cellular polarity conditions derived from static domains can generate laminar patterning in dynamic environments. However, they are insufficient for the maintenance of patterning when subjected to substantial morphological perturbations. In agreement with the mathematical implications of strict signalling polarity induced on the cells, we propose an adhesion-dependent Notch-Delta biological process that has the potential to initiate bilayer stratification in a developing mammary organoid.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imamat/hxac011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Fine-grain patterns produced by juxtacrine signalling have previously been studied using static monolayers as cellular domains. However, analytic results are usually restricted to a few cells due to the algebraic complexity of non-linear dynamical systems. Motivated by concentric patterning of Notch expression observed in the mammary gland, we combine concepts from graph and control theory to represent cellular connectivity and behaviour. The resulting theoretical framework allows us to exploit the symmetry of multicellular bilayer structures in 2D and 3D, thereby deriving analytical conditions that drive the dynamical system to form laminar patterns, consistent with the formation of cell polarity by activator localization. Critically, the patterning conditions are independent of the precise dynamical details, thus the framework allows for generality in understanding the influence of cellular geometry and signal polarity on patterning using lateral-inhibition systems. Applying the analytic conditions to mammary organoids suggests that intense cell signalling polarity is required for the maintenance of stratified cell types within a static bilayer using a lateral-inhibition mechanism. Furthermore, by employing 2D and 3D cell-based models, we highlight that the cellular polarity conditions derived from static domains can generate laminar patterning in dynamic environments. However, they are insufficient for the maintenance of patterning when subjected to substantial morphological perturbations. In agreement with the mathematical implications of strict signalling polarity induced on the cells, we propose an adhesion-dependent Notch-Delta biological process that has the potential to initiate bilayer stratification in a developing mammary organoid.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.