A study on using robust hedonic regression implementation

Serdar Cihat Gören, O. Arslan
{"title":"A study on using robust hedonic regression implementation","authors":"Serdar Cihat Gören, O. Arslan","doi":"10.31801/cfsuasmas.1187009","DOIUrl":null,"url":null,"abstract":"This article aims to determine the features affecting the price of a product with the hedonic regression model and to estimate the contribution of each feature to the price by using robust regression estimation methods. For the analysis, the price and feature information of the laptop product group were obtained from the big data source by using the web scraping method. Four alternatives of the hedonic regression model are used to determine the features affecting the price of the laptops. The contribution of each feature to the laptop price is estimated by using the robust (Huber M-estimator) estimation method and the Ordinary Least Squares (OLS) estimation method, and the resulting estimates are compared for both methods. In the framework of the data set used in the study, it is observed that the effective model is the Logarithmic Robust Hedonic Regression Model.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1187009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article aims to determine the features affecting the price of a product with the hedonic regression model and to estimate the contribution of each feature to the price by using robust regression estimation methods. For the analysis, the price and feature information of the laptop product group were obtained from the big data source by using the web scraping method. Four alternatives of the hedonic regression model are used to determine the features affecting the price of the laptops. The contribution of each feature to the laptop price is estimated by using the robust (Huber M-estimator) estimation method and the Ordinary Least Squares (OLS) estimation method, and the resulting estimates are compared for both methods. In the framework of the data set used in the study, it is observed that the effective model is the Logarithmic Robust Hedonic Regression Model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用稳健享乐回归实现的研究
本文旨在通过特征回归模型确定影响产品价格的特征,并通过稳健回归估计方法估计每个特征对价格的贡献。为了进行分析,使用网络抓取方法从大数据源中获取笔记本电脑产品组的价格和功能信息。特征回归模型的四种替代方案用于确定影响笔记本电脑价格的特征。通过使用鲁棒(Huber M-估计器)估计方法和普通最小二乘(OLS)估计方法来估计每个特征对笔记本电脑价格的贡献,并比较这两种方法的估计结果。在研究中使用的数据集框架中,观察到有效的模型是对数鲁棒Hedonic回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
61
期刊最新文献
BMO estimate for the higher order commutators of Marcinkiewicz integral operator on grand Herz-Morrey spaces The type I heavy-tailed odd power generalized Weibull-G family of distributions with applications A Diophantine equation including Fibonacci and Fibonomial coefficients Quasi hemi-slant pseudo-Riemannian submersions in para-complex geometry On the curves lying on parallel-like surfaces of the ruled surface in $E^{3}$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1