{"title":"A study on using robust hedonic regression implementation","authors":"Serdar Cihat Gören, O. Arslan","doi":"10.31801/cfsuasmas.1187009","DOIUrl":null,"url":null,"abstract":"This article aims to determine the features affecting the price of a product with the hedonic regression model and to estimate the contribution of each feature to the price by using robust regression estimation methods. For the analysis, the price and feature information of the laptop product group were obtained from the big data source by using the web scraping method. Four alternatives of the hedonic regression model are used to determine the features affecting the price of the laptops. The contribution of each feature to the laptop price is estimated by using the robust (Huber M-estimator) estimation method and the Ordinary Least Squares (OLS) estimation method, and the resulting estimates are compared for both methods. In the framework of the data set used in the study, it is observed that the effective model is the Logarithmic Robust Hedonic Regression Model.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1187009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article aims to determine the features affecting the price of a product with the hedonic regression model and to estimate the contribution of each feature to the price by using robust regression estimation methods. For the analysis, the price and feature information of the laptop product group were obtained from the big data source by using the web scraping method. Four alternatives of the hedonic regression model are used to determine the features affecting the price of the laptops. The contribution of each feature to the laptop price is estimated by using the robust (Huber M-estimator) estimation method and the Ordinary Least Squares (OLS) estimation method, and the resulting estimates are compared for both methods. In the framework of the data set used in the study, it is observed that the effective model is the Logarithmic Robust Hedonic Regression Model.