GLCM FEATURES FOR LEARNING FLOODED VEGETATION FROM SENTINEL-1 AND SENTINEL-2 DATA

B. Tavus
{"title":"GLCM FEATURES FOR LEARNING FLOODED VEGETATION FROM SENTINEL-1 AND SENTINEL-2 DATA","authors":"B. Tavus","doi":"10.5194/isprs-archives-xlviii-m-1-2023-601-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Efforts on flood mapping from active and passive satellite Earth Observation sensors increased in the last decade especially due to the availability of free datasets from European Space Agency’s Sentinel-1 and Sentinel-2 platforms. Regular data acquisition scheme also allows observing areas prone to natural hazards with a small temporal interval (within a week). Thus, before and after datasets are often available for detecting surface changes caused by flooding. This study investigates the contribution of textural variables to the predictive performance of a data-driven machine learning algorithm for detecting the effects of a flooding caused by Sardoba Dam break in Uzbekistan. In addition to the spectral channels of Sentinel-2 and polarization bands of Sentinel-1, two spectral indices (normalized difference vegetation index and modified normalized difference water index), and textural features of gray-level co-occurrence matrix (GLCM) were used with the Random Forest. Due to high dimensionality of input variables, principal component (PC) analysis was applied to the GLCM features and only the most significant PCs were used for modeling. The feature stacks used for learning were derived from both pre- and post-event Sentinel-1 and Sentinel-2 images. The models were validated through model test measures and external reference data obtained from PlanetScope imagery. The results show that the GLCM features improve the classification of flooded areas (from 82% to 93%) and flooded vegetation (from 17% to 78%) expressed in user’s accuracy. As an outcome of the study, the use of textural features is recommended for accurate mapping of flooded areas and flooded vegetation.\n","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-m-1-2023-601-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Efforts on flood mapping from active and passive satellite Earth Observation sensors increased in the last decade especially due to the availability of free datasets from European Space Agency’s Sentinel-1 and Sentinel-2 platforms. Regular data acquisition scheme also allows observing areas prone to natural hazards with a small temporal interval (within a week). Thus, before and after datasets are often available for detecting surface changes caused by flooding. This study investigates the contribution of textural variables to the predictive performance of a data-driven machine learning algorithm for detecting the effects of a flooding caused by Sardoba Dam break in Uzbekistan. In addition to the spectral channels of Sentinel-2 and polarization bands of Sentinel-1, two spectral indices (normalized difference vegetation index and modified normalized difference water index), and textural features of gray-level co-occurrence matrix (GLCM) were used with the Random Forest. Due to high dimensionality of input variables, principal component (PC) analysis was applied to the GLCM features and only the most significant PCs were used for modeling. The feature stacks used for learning were derived from both pre- and post-event Sentinel-1 and Sentinel-2 images. The models were validated through model test measures and external reference data obtained from PlanetScope imagery. The results show that the GLCM features improve the classification of flooded areas (from 82% to 93%) and flooded vegetation (from 17% to 78%) expressed in user’s accuracy. As an outcome of the study, the use of textural features is recommended for accurate mapping of flooded areas and flooded vegetation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从sentinel-1和sentinel-2数据中学习淹没植被的GLCM特征
摘要在过去十年中,利用主动和被动卫星地球观测传感器绘制洪水地图的工作有所增加,特别是由于欧洲空间局哨兵1号和哨兵2号平台提供了免费数据集。定期数据采集方案还允许以较小的时间间隔(一周内)观察容易发生自然灾害的地区。因此,通常可以使用前后数据集来检测由洪水引起的地表变化。本研究探讨了纹理变量对数据驱动机器学习算法预测性能的贡献,该算法用于检测乌兹别克斯坦Sardoba大坝溃坝引起的洪水的影响。除了Sentinel-2的光谱通道和Sentinel-1的偏振波段外,还使用了归一化植被指数和修正归一化水体指数两种光谱指数,以及灰度共生矩阵(GLCM)的纹理特征。由于输入变量的高维性,我们将主成分(PC)分析应用于GLCM特征,并且只使用最显著的PC进行建模。用于学习的特征堆栈来自事件前和事件后的Sentinel-1和Sentinel-2图像。通过模型测试措施和从PlanetScope图像中获得的外部参考数据对模型进行了验证。结果表明,GLCM特征提高了用户对淹没区域(从82%提高到93%)和淹没植被(从17%提高到78%)的分类精度。作为研究的结果,建议使用纹理特征来精确绘制洪水地区和洪水植被。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
期刊最新文献
EVALUATION OF CONSUMER-GRADE AND SURVEY-GRADE UAV-LIDAR EVALUATING GEOMETRY OF AN INDOOR SCENARIO WITH OCCLUSIONS BASED ON TOTAL STATION MEASUREMENTS OF WALL ELEMENTS INVESTIGATION ON THE USE OF NeRF FOR HERITAGE 3D DENSE RECONSTRUCTION FOR INTERIOR SPACES TERRESTRIAL 3D MAPPING OF FORESTS: GEOREFERENCING CHALLENGES AND SENSORS COMPARISONS SPECTRAL ANALYSIS OF IMAGES OF PLANTS UNDER STRESS USING A CLOSE-RANGE CAMERA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1