{"title":"FFT Analysis and Motion Classification of EMG Signals","authors":"Gazi Akgün, Ugur Demir, Alper Yildirim","doi":"10.53070/bbd.1172684","DOIUrl":null,"url":null,"abstract":"Bu çalışmada EMG sinyallerinin frekans analizi yapılarak elde edilen veriler ile hareket sınıflandırması yapmak amaçlanmıştır. Üç kanaldan toplanan EMG sinyalleri uygun pencerelere ayrılarak her bir pencereye” hilbert “ zarflama yöntemi uygulanmış ve FFT katsayıları hesaplanmıştır. Kaydedilen EMG sinyallerinin frekans spektrumları incelenmiştir. Bu katsayıları ile bir sınıflandırma algoritmasında kullanmak amacıyla her bir pencerenin ağırlıklı frekans bileşeni hesaplanmıştır. Elde edilen veriler YSA (Yapay sinir Ağları) algoritmasının eğitilmesi amacıyla kullanılmış ve bu işlem EMG sinyallerinin sınıflandırılması amacıyla kullanılmıştır. Sınıflandırma işlemi sonucunda özellikle aynı kas gruplarındaki kasılma kuvvetleri ile birbirinden ayırt edilebilen hareketlerin yalnızca frekans domeninde değil zaman domeninde de incelenmesi gerektiği sonucuna varılmıştır.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science-AGH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53070/bbd.1172684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Bu çalışmada EMG sinyallerinin frekans analizi yapılarak elde edilen veriler ile hareket sınıflandırması yapmak amaçlanmıştır. Üç kanaldan toplanan EMG sinyalleri uygun pencerelere ayrılarak her bir pencereye” hilbert “ zarflama yöntemi uygulanmış ve FFT katsayıları hesaplanmıştır. Kaydedilen EMG sinyallerinin frekans spektrumları incelenmiştir. Bu katsayıları ile bir sınıflandırma algoritmasında kullanmak amacıyla her bir pencerenin ağırlıklı frekans bileşeni hesaplanmıştır. Elde edilen veriler YSA (Yapay sinir Ağları) algoritmasının eğitilmesi amacıyla kullanılmış ve bu işlem EMG sinyallerinin sınıflandırılması amacıyla kullanılmıştır. Sınıflandırma işlemi sonucunda özellikle aynı kas gruplarındaki kasılma kuvvetleri ile birbirinden ayırt edilebilen hareketlerin yalnızca frekans domeninde değil zaman domeninde de incelenmesi gerektiği sonucuna varılmıştır.