Endogenous models of binary choice outcomes: Copula-based maximum-likelihood estimation and treatment effects

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Stata Journal Pub Date : 2022-12-01 DOI:10.1177/1536867X221140943
Takuya Hasebe
{"title":"Endogenous models of binary choice outcomes: Copula-based maximum-likelihood estimation and treatment effects","authors":"Takuya Hasebe","doi":"10.1177/1536867X221140943","DOIUrl":null,"url":null,"abstract":"In this article, I describe the commands that implement the estimation of three endogenous models of binary choice outcome. The command esbinary fits the endogenously switching model, where a potential outcome differs across two treatment states. The command edbinary fits the endogenous dummy model, which includes a dummy variable indicating the treatment state as one of the explanatory variables. After one estimates the parameters of these models, various treatment effects can be estimated as postestimation statistics. The command ssbinary fits the sample-selection model, where an outcome is observed in only one of the states. The commands fit these models using copula-based maximumlikelihood estimation.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221140943","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, I describe the commands that implement the estimation of three endogenous models of binary choice outcome. The command esbinary fits the endogenously switching model, where a potential outcome differs across two treatment states. The command edbinary fits the endogenous dummy model, which includes a dummy variable indicating the treatment state as one of the explanatory variables. After one estimates the parameters of these models, various treatment effects can be estimated as postestimation statistics. The command ssbinary fits the sample-selection model, where an outcome is observed in only one of the states. The commands fit these models using copula-based maximumlikelihood estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二元选择结果的内生模型:基于copula的最大似然估计和治疗效果
在本文中,我描述了实现对三种二元选择结果内生模型的估计的命令。命令esbinary适合内源性切换模型,在这种模型中,两种处理状态的潜在结果是不同的。命令edbinary适合内源性假人模型,该模型包含指示处理状态的假人变量作为解释变量之一。在估计了这些模型的参数后,可以估计出各种治疗效果作为后估计统计量。命令ssbinary适合样本选择模型,其中只在一种状态下观察到结果。这些命令使用基于copula的最大似然估计来拟合这些模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
期刊最新文献
posw: A command for the stepwise Neyman-orthogonal estimator A Lagrange multiplier test for the mean stationarity assumption in dynamic panel-data models Visualizing uncertainty in a two-dimensional estimate using confidence and comparison regions Color palettes for Stata graphics: An update Pseudo-observations in a multistate setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1