Toxicity prediction using locality-sensitive deep learner

IF 3.1 Q2 TOXICOLOGY Computational Toxicology Pub Date : 2022-02-01 DOI:10.1016/j.comtox.2021.100210
Xiu Huan Yap , Michael Raymer
{"title":"Toxicity prediction using locality-sensitive deep learner","authors":"Xiu Huan Yap ,&nbsp;Michael Raymer","doi":"10.1016/j.comtox.2021.100210","DOIUrl":null,"url":null,"abstract":"<div><p>Toxicity prediction using linear QSAR models typically show good predictivity when trained on a small-scale, local level of similar chemicals, but not on a global level spanning a chemical library. We hypothesize that large chemical toxicity datasets generally have a <em>locally-linear data</em> structure, and propose the <em>locality-sensitive deep learner</em> (LSDL), a deep neural network with attention mechanism <span>[1]</span> and an optional instance-based feature weighting component, to tackle the challenges of heterogeneous classification space with locally-varying noise features. On carefully-constructed synthetic data with extremely unbalanced classes (10% positive), the locality-sensitive deep learner with learned feature weights retained high test performance (AUC &gt; 0.9) in the presence of 60% cluster-specific feature noise, while feed-forward neural network appeared to over-fit the data (AUC &lt; 0.6). For the Tox21 dataset <span>[2]</span>, locality-sensitive deep learner out-performed feed-forward neural network in 9 out of 12 labels. For acetylcholinesterase inhibition (AChEi) <span>[3]</span>, Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) <span>[4]</span>, and Acute Oral Toxicity (AOT) <span>[5]</span> datasets, we observed that the combination of locality-sensitive deep learner with feed-forward neural network showed improved test performance than individual models in almost all cases. Generalizing machine learning models to fit locally-linear data may potentially improve predictivity of chemical toxicity models. The proposed modeling approach could potentially complement and add diversity to the current suite of predictive toxicity algorithms for use in ensemble and/or consensus models.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"21 ","pages":"Article 100210"},"PeriodicalIF":3.1000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111321000566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Toxicity prediction using linear QSAR models typically show good predictivity when trained on a small-scale, local level of similar chemicals, but not on a global level spanning a chemical library. We hypothesize that large chemical toxicity datasets generally have a locally-linear data structure, and propose the locality-sensitive deep learner (LSDL), a deep neural network with attention mechanism [1] and an optional instance-based feature weighting component, to tackle the challenges of heterogeneous classification space with locally-varying noise features. On carefully-constructed synthetic data with extremely unbalanced classes (10% positive), the locality-sensitive deep learner with learned feature weights retained high test performance (AUC > 0.9) in the presence of 60% cluster-specific feature noise, while feed-forward neural network appeared to over-fit the data (AUC < 0.6). For the Tox21 dataset [2], locality-sensitive deep learner out-performed feed-forward neural network in 9 out of 12 labels. For acetylcholinesterase inhibition (AChEi) [3], Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) [4], and Acute Oral Toxicity (AOT) [5] datasets, we observed that the combination of locality-sensitive deep learner with feed-forward neural network showed improved test performance than individual models in almost all cases. Generalizing machine learning models to fit locally-linear data may potentially improve predictivity of chemical toxicity models. The proposed modeling approach could potentially complement and add diversity to the current suite of predictive toxicity algorithms for use in ensemble and/or consensus models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于位置敏感深度学习的毒性预测
使用线性QSAR模型进行毒性预测时,在小规模、局部水平的类似化学物质上进行训练时,通常显示出良好的预测能力,但在跨越化学库的全球水平上则不行。我们假设大型化学毒性数据集通常具有局部线性数据结构,并提出了位置敏感深度学习器(LSDL),一种具有注意机制[1]的深度神经网络和可选的基于实例的特征加权组件,以解决具有局部变化噪声特征的异构分类空间的挑战。在精心构建的具有极度不平衡类(10%正)的合成数据上,具有学习特征权重的位置敏感深度学习器保持了较高的测试性能(AUC >0.9),而前馈神经网络出现过拟合数据(AUC <0.6)。对于Tox21数据集[2],位置敏感深度学习在12个标签中的9个上优于前馈神经网络。对于乙酰胆碱酯酶抑制(AChEi)[3]、雄激素受体活性协同建模项目(CoMPARA)[4]和急性口服毒性(AOT)[5]数据集,我们观察到,在几乎所有情况下,位置敏感深度学习与前传神经网络的组合都比单个模型表现出更好的测试性能。推广机器学习模型以拟合局部线性数据可能潜在地提高化学毒性模型的预测性。所提出的建模方法可以潜在地补充和增加当前用于集成和/或共识模型的预测毒性算法套件的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Toxicology
Computational Toxicology Computer Science-Computer Science Applications
CiteScore
5.50
自引率
0.00%
发文量
53
审稿时长
56 days
期刊介绍: Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs
期刊最新文献
Reconstruction of exposure to volatile organic compounds from venous blood concentration and an uncertain physiologically-based pharmacokinetic model Developing quantitative Adverse Outcome Pathways: An ordinary differential equation-based computational framework Quantitative prediction of hemolytic activity of peptides Species specific kinetics of imidacloprid and carbendazim in mouse and rat and consequences for biomonitoring In silico analysis of the melamine structural analogues interaction with calcium-sensing receptor: A potential for nephrotoxicity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1