{"title":"Exploring the boundary between atoms and the continuum by computers: a personal history","authors":"Brad Lee Holian","doi":"10.1140/epjh/s13129-021-00010-z","DOIUrl":null,"url":null,"abstract":"<p>In this admittedly personal account of the history of atomistic simulations of fluids (at the atomic or molecular level), I will focus on the competing efforts to reach the boundary between atoms and the continuum. The prevailing <i>wisdom</i> was that thermal fluctuations at the atomistic scale—both time (a few mean collision times) and space (a few atomic spacings)—would make the connection virtually impossible. This is just a part of the story about how molecular dynamics was able to connect to Navier–Stokes–Fourier hydrodynamics. Resistance in the theoretical physics community to computer simulations of equilibrium fluids at the atomistic scale was only exceeded by the even stiffer objections to non-equilibrium molecular-dynamics simulations: after the fifty years from Boltzmann to molecular dynamics, it took another quarter century to overcome the doubts.</p>","PeriodicalId":791,"journal":{"name":"The European Physical Journal H","volume":"46 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal H","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjh/s13129-021-00010-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this admittedly personal account of the history of atomistic simulations of fluids (at the atomic or molecular level), I will focus on the competing efforts to reach the boundary between atoms and the continuum. The prevailing wisdom was that thermal fluctuations at the atomistic scale—both time (a few mean collision times) and space (a few atomic spacings)—would make the connection virtually impossible. This is just a part of the story about how molecular dynamics was able to connect to Navier–Stokes–Fourier hydrodynamics. Resistance in the theoretical physics community to computer simulations of equilibrium fluids at the atomistic scale was only exceeded by the even stiffer objections to non-equilibrium molecular-dynamics simulations: after the fifty years from Boltzmann to molecular dynamics, it took another quarter century to overcome the doubts.
期刊介绍:
The purpose of this journal is to catalyse, foster, and disseminate an awareness and understanding of the historical development of ideas in contemporary physics, and more generally, ideas about how Nature works.
The scope explicitly includes:
- Contributions addressing the history of physics and of physical ideas and concepts, the interplay of physics and mathematics as well as the natural sciences, and the history and philosophy of sciences, together with discussions of experimental ideas and designs - inasmuch as they clearly relate, and preferably add, to the understanding of modern physics.
- Annotated and/or contextual translations of relevant foreign-language texts.
- Careful characterisations of old and/or abandoned ideas including past mistakes and false leads, thereby helping working physicists to assess how compelling contemporary ideas may turn out to be in future, i.e. with hindsight.