Australian English Bilingual Corpus: Automatic forced-alignment accuracy in Russian and English

IF 0.4 3区 文学 0 LANGUAGE & LINGUISTICS Australian Journal of Linguistics Pub Date : 2020-04-01 DOI:10.1080/07268602.2020.1737507
Ksenia Gnevsheva, S. Gonzalez, R. Fromont
{"title":"Australian English Bilingual Corpus: Automatic forced-alignment accuracy in Russian and English","authors":"Ksenia Gnevsheva, S. Gonzalez, R. Fromont","doi":"10.1080/07268602.2020.1737507","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper introduces the Australian English Bilingual Corpus, a Russian–English spoken corpus, and uses it for a comparison of automatic time alignment between two different languages. Automatic forced alignment is gaining popularity in corpus research as it allows for time-efficient processing of phonetic information. The Language, Brain and Behaviour: Corpus Analysis Tool is one aligner which compares well with others in terms of alignment accuracy. Most of the forced-alignment work has been done with different varieties of English. This paper compares alignment accuracy between Russian and English and discusses aligner settings and data characteristics that affect it. The results suggest higher alignment accuracy for English than Russian. For Russian, alignment accuracy improves with stress specification; that is, when stressed and unstressed vowels are treated as separate categories.","PeriodicalId":44988,"journal":{"name":"Australian Journal of Linguistics","volume":"40 1","pages":"182 - 193"},"PeriodicalIF":0.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07268602.2020.1737507","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1080/07268602.2020.1737507","RegionNum":3,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT This paper introduces the Australian English Bilingual Corpus, a Russian–English spoken corpus, and uses it for a comparison of automatic time alignment between two different languages. Automatic forced alignment is gaining popularity in corpus research as it allows for time-efficient processing of phonetic information. The Language, Brain and Behaviour: Corpus Analysis Tool is one aligner which compares well with others in terms of alignment accuracy. Most of the forced-alignment work has been done with different varieties of English. This paper compares alignment accuracy between Russian and English and discusses aligner settings and data characteristics that affect it. The results suggest higher alignment accuracy for English than Russian. For Russian, alignment accuracy improves with stress specification; that is, when stressed and unstressed vowels are treated as separate categories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
澳大利亚英语双语语料库:俄语和英语的自动强制对齐精度
摘要本文介绍了澳大利亚英语双语语料库——一个俄英口语语料库,并利用它对两种不同语言之间的自动时间对齐进行了比较。自动强制对齐在语料库研究中越来越受欢迎,因为它允许时间效率的语音信息处理。语言,大脑和行为:语料库分析工具是一种校准器,在校准精度方面与其他校准器相比要好。大多数强制校准工作都是用不同种类的英语完成的。本文比较了俄语和英语的对齐精度,并讨论了影响对齐精度的校准器设置和数据特征。结果表明,英语的对齐精度高于俄语。对于俄文,对准精度随着应力规格的增加而提高;也就是说,当重读元音和非重读元音被视为单独的类别时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
10
期刊最新文献
Introduction: Language corpora in Australia The GeSCA repository: Gesture and Sign Corpus of Australia Building a searchable online corpus of Australian and New Zealand aligned speech The longitudinal corpus of language acquisition, maintenance and contact: Warlpiri & Light Warlpiri Analyzing online public discourse in Australia: Australian Twittersphere and NewsTalk corpora
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1