Fitting mixture models for feeling and uncertainty for rating data analysis

IF 3.2 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Stata Journal Pub Date : 2022-03-01 DOI:10.1177/1536867X221083927
G. Cerulli, R. Simone, F. Di Iorio, D. Piccolo, Christopher F. Baum
{"title":"Fitting mixture models for feeling and uncertainty for rating data analysis","authors":"G. Cerulli, R. Simone, F. Di Iorio, D. Piccolo, Christopher F. Baum","doi":"10.1177/1536867X221083927","DOIUrl":null,"url":null,"abstract":"In this article, we present the command cub, which fits ordinal rating data using combination of uniform and binomial (CUB) models, a class of finite mixture distributions accounting for both feeling and uncertainty of the response process. CUB identifies the components that define the mixture in the baseline model specification. We apply maximum likelihood methods to estimate feeling and uncertainty parameters, which are possibly explained in terms of covariates. An extension to inflated CUB models is discussed. We also present a subcommand, scattercub, for visualization of results. We then illustrate the use of cub using a case study on students’ satisfaction for the orientation services provided by the University of Naples Federico II in Italy.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"195 - 223"},"PeriodicalIF":3.2000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stata Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1536867X221083927","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we present the command cub, which fits ordinal rating data using combination of uniform and binomial (CUB) models, a class of finite mixture distributions accounting for both feeling and uncertainty of the response process. CUB identifies the components that define the mixture in the baseline model specification. We apply maximum likelihood methods to estimate feeling and uncertainty parameters, which are possibly explained in terms of covariates. An extension to inflated CUB models is discussed. We also present a subcommand, scattercub, for visualization of results. We then illustrate the use of cub using a case study on students’ satisfaction for the orientation services provided by the University of Naples Federico II in Italy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于评级数据分析的感觉和不确定性的混合物模型拟合
在本文中,我们提出了命令cub,它使用统一和二项式(cub)模型的组合来拟合顺序评级数据,这是一类考虑响应过程的感觉和不确定性的有限混合分布。CUB确定了在基准模型规范中定义混合物的成分。我们应用最大似然方法来估计感觉和不确定性参数,这些参数可能用协变量来解释。讨论了膨胀CUB模型的一个扩展。我们还提供了一个子命令scattercub,用于可视化结果。然后,我们通过一个关于学生对意大利那不勒斯大学费德里科二世分校提供的迎新服务的满意度的案例研究来说明cub的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stata Journal
Stata Journal 数学-统计学与概率论
CiteScore
7.80
自引率
4.20%
发文量
44
审稿时长
>12 weeks
期刊介绍: The Stata Journal is a quarterly publication containing articles about statistics, data analysis, teaching methods, and effective use of Stata''s language. The Stata Journal publishes reviewed papers together with shorter notes and comments, regular columns, book reviews, and other material of interest to researchers applying statistics in a variety of disciplines.
期刊最新文献
Cluster randomized controlled trial analysis at the cluster level: The clan command. mpitb: A toolbox for multidimensional poverty indices Iterative intercensal single-decrement life tables using Stata Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes hdps: A suite of commands for applying high-dimensional propensity-score approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1