Characterization of plant growth promoting potential of 3D-printed plant microbial fuel cells

D. P. E. Palmero, K. Pamintuan
{"title":"Characterization of plant growth promoting potential of 3D-printed plant microbial fuel cells","authors":"D. P. E. Palmero, K. Pamintuan","doi":"10.14710/ijred.2023.52291","DOIUrl":null,"url":null,"abstract":"Plant-Microbial Fuel Cell (PMFC) is an emerging technology that converts plant waste into electrical energy through rhizodeposition, offering a renewable and sustainable source of energy. Deviating from the traditional PMFC configurations, additive manufacturing was utilized to create intricate and efficient designs using polymer-carbon composites. Concerning the agricultural sector, the effect of 3D-printed PMFCs on the growth and biomass distribution of Phaseolus lunatus and Ipomoea aquatica was determined. The experiment showed that electrostimulation promoted the average daily leaf number and plant height of both polarized plants, which were statistically proven to be greater than the control (α = 0.05), by energizing the flow of ions in the soil, boosting nutrient uptake and metabolism. It also stimulated the growth of roots, increasing the root dry mass of polarized plants by 155.44% and 66.30% for I. aquatica and P. Lunatus against their non-polarized counterpart. Due to the biofilm formation on the anode surface, the number of root nodules of the polarized P. lunatus was 51.30% higher than the control, while the protein content in the PMFC setup was 42.22% and 8.26% higher than the control for I. aquatica and P. lunatus, respectively. The voltage readings resemble the plants' average growth rate, and the polarization studies showed that the optimum external resistances in the I. aquatica- and P. lunatus-powered PMFC were 4.7 kΩ and 10 kΩ, respectively. Due to other prevailing pathways of organic carbon consumption, such as methanogenesis, the effect of polarization on the organic carbon content in soil is currently inconclusive and requires further study.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2023.52291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-Microbial Fuel Cell (PMFC) is an emerging technology that converts plant waste into electrical energy through rhizodeposition, offering a renewable and sustainable source of energy. Deviating from the traditional PMFC configurations, additive manufacturing was utilized to create intricate and efficient designs using polymer-carbon composites. Concerning the agricultural sector, the effect of 3D-printed PMFCs on the growth and biomass distribution of Phaseolus lunatus and Ipomoea aquatica was determined. The experiment showed that electrostimulation promoted the average daily leaf number and plant height of both polarized plants, which were statistically proven to be greater than the control (α = 0.05), by energizing the flow of ions in the soil, boosting nutrient uptake and metabolism. It also stimulated the growth of roots, increasing the root dry mass of polarized plants by 155.44% and 66.30% for I. aquatica and P. Lunatus against their non-polarized counterpart. Due to the biofilm formation on the anode surface, the number of root nodules of the polarized P. lunatus was 51.30% higher than the control, while the protein content in the PMFC setup was 42.22% and 8.26% higher than the control for I. aquatica and P. lunatus, respectively. The voltage readings resemble the plants' average growth rate, and the polarization studies showed that the optimum external resistances in the I. aquatica- and P. lunatus-powered PMFC were 4.7 kΩ and 10 kΩ, respectively. Due to other prevailing pathways of organic carbon consumption, such as methanogenesis, the effect of polarization on the organic carbon content in soil is currently inconclusive and requires further study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3d打印植物微生物燃料电池促进植物生长潜力的表征
植物微生物燃料电池(PMFC)是一项新兴技术,通过根沉积将植物废物转化为电能,提供可再生和可持续的能源来源。与传统的PMFC结构不同,增材制造被用于使用聚合物-碳复合材料创建复杂而高效的设计。在农业领域,研究了3d打印pmfc对Phaseolus lunatus和Ipomoea aquatica生长和生物量分布的影响。结果表明,电刺激通过激活土壤中离子的流动,促进养分的吸收和代谢,提高了极化植株的日平均叶片数和株高,均显著高于对照(α = 0.05)。对根的生长也有一定的促进作用,极化植株的根干质量比非极化植株分别提高了155.44%和66.30%。由于阳极表面形成了生物膜,极化后的月形海参根瘤数比对照高51.30%,PMFC设置下的蛋白质含量分别比对照高42.22%和8.26%。电压读数与植物的平均生长速率相似,极化研究表明,水草和月草驱动的PMFC的最佳外部电阻分别为4.7 kΩ和10 kΩ。由于有机碳消耗的其他主要途径,如甲烷生成,极化对土壤有机碳含量的影响目前尚无定论,需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
16.00%
发文量
83
审稿时长
8 weeks
期刊最新文献
Performance characterization of a novel PV/T panel with nanofluids under the climatic conditions of Muscat, Oman Solid waste management by RDF production from landfilled waste to renewable fuel of Nonthaburi Computational prediction of green fuels from crude palm oil in fluid catalytic cracking riser Energy performance evaluation of a photovoltaic thermal phase change material (PVT-PCM) using a spiral flow configuration Exploring the link between green energy, CO2 emissions, exchange rate and economic growth: Perspective from emerging South Asian countries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1