Using high hydrostatic pressure as an abiotic elicitor strategy for improving capsaicin production in free and immobilized cell suspension cultures of Capsicum annuum L.
{"title":"Using high hydrostatic pressure as an abiotic elicitor strategy for improving capsaicin production in free and immobilized cell suspension cultures of Capsicum annuum L.","authors":"C. İşlek, E. Koç, Ergin Murat Altuner, H. Alpas","doi":"10.1080/08957959.2021.1903458","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, the effects of immobilization and high hydrostatic pressure (HHP) on capsaicin production in cell suspension culture of pepper seeds at different application times were investigated. Callus cultures were obtained from in vitro germinated hypocotyl explants of pepper seedlings and cell suspensions were prepared from calluses. Immobilized cell suspension cultures with calcium alginate and free cell suspension cultures were obtained by using these cell suspensions. 50, 100, 200, 300 and 400 MPa were applied to both free and immobilized cell suspensions as an elicitor. When all the results were compared, the highest amount of capsaicin was achieved in immobilized cell suspensions on the tenth day as 293.187 µg/g f.w at 400 MPa pressure. As a result, it can be concluded that the combined application of immobilization and elicitor (HHP) caused significant increases (p < .05) in the amount of capsaicin.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"41 1","pages":"198 - 208"},"PeriodicalIF":1.2000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08957959.2021.1903458","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2021.1903458","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In this study, the effects of immobilization and high hydrostatic pressure (HHP) on capsaicin production in cell suspension culture of pepper seeds at different application times were investigated. Callus cultures were obtained from in vitro germinated hypocotyl explants of pepper seedlings and cell suspensions were prepared from calluses. Immobilized cell suspension cultures with calcium alginate and free cell suspension cultures were obtained by using these cell suspensions. 50, 100, 200, 300 and 400 MPa were applied to both free and immobilized cell suspensions as an elicitor. When all the results were compared, the highest amount of capsaicin was achieved in immobilized cell suspensions on the tenth day as 293.187 µg/g f.w at 400 MPa pressure. As a result, it can be concluded that the combined application of immobilization and elicitor (HHP) caused significant increases (p < .05) in the amount of capsaicin.
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.