Métodos aplicados a la estimación de gases de efecto invernadero en los embalses de hidroeléctricas

IF 0.3 Q4 BUSINESS Suma de Negocios Pub Date : 2022-09-01 DOI:10.14349/sumneg/2022.v13.n28.a6
Rhonmer Orlando Pérez-Cedeño, Carmen Luisa Vásquez Stanescu, Maritza Torres-Samuel, Rodrigo Ramírez-Pisco
{"title":"Métodos aplicados a la estimación de gases de efecto invernadero en los embalses de hidroeléctricas","authors":"Rhonmer Orlando Pérez-Cedeño, Carmen Luisa Vásquez Stanescu, Maritza Torres-Samuel, Rodrigo Ramírez-Pisco","doi":"10.14349/sumneg/2022.v13.n28.a6","DOIUrl":null,"url":null,"abstract":"Introduction/objective: Emissions of naturally occurring greenhouse gases (GHG) have increased due to anthropogenic actions, threatening the planet with environmental imbalance. Reservoirs for storing water, which is later used to drive the turbines of hydroelectric power plants, accumulate sediments generating GHGs. This paper analyzes the methods used to estimate GHG emissions in reservoirs, classifying the scientific publications found in the ScienceDirect and Google Scholar search engines. Methodology: The analytical method uses a Boolean expression to collect information in the indicated search engines and extract the relevant literature considering factors such as water temperature, geographic location, type and surface area of the reservoir, type of gas and technology, attributing a relevance value to each characteristic to elaborate a matrix of results. Results: The results show that more than 50% are based on GHG estimates and the rest on direct measurements in the reservoirs. In addition, the contribution of artificial intelligence as an estimation technique is less than 6 %. Conclusions: Finally, the world regions where studies are conducted are proportionally distributed and the analysis of scientific literature indicates versatility in GHG estimation methods in hydropower reservoirs.","PeriodicalId":42652,"journal":{"name":"Suma de Negocios","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suma de Negocios","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14349/sumneg/2022.v13.n28.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction/objective: Emissions of naturally occurring greenhouse gases (GHG) have increased due to anthropogenic actions, threatening the planet with environmental imbalance. Reservoirs for storing water, which is later used to drive the turbines of hydroelectric power plants, accumulate sediments generating GHGs. This paper analyzes the methods used to estimate GHG emissions in reservoirs, classifying the scientific publications found in the ScienceDirect and Google Scholar search engines. Methodology: The analytical method uses a Boolean expression to collect information in the indicated search engines and extract the relevant literature considering factors such as water temperature, geographic location, type and surface area of the reservoir, type of gas and technology, attributing a relevance value to each characteristic to elaborate a matrix of results. Results: The results show that more than 50% are based on GHG estimates and the rest on direct measurements in the reservoirs. In addition, the contribution of artificial intelligence as an estimation technique is less than 6 %. Conclusions: Finally, the world regions where studies are conducted are proportionally distributed and the analysis of scientific literature indicates versatility in GHG estimation methods in hydropower reservoirs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水电站水库温室气体估算方法的应用
引言/目标:由于人类活动,自然产生的温室气体(GHG)的排放量增加,威胁着地球的环境失衡。储水的水库后来被用来驱动水力发电厂的涡轮机,蓄积了产生温室气体的沉积物。本文分析了水库温室气体排放估算方法,并对ScienceDirect和谷歌Scholar搜索引擎上的科学出版物进行了分类。方法:分析法使用布尔表达式在指定的搜索引擎中收集信息,并考虑水温、地理位置、储层类型和表面积、天然气类型和技术等因素提取相关文献,并为每个特征赋予相关值,以制作结果矩阵。结果:研究结果表明,温室气体估算值占总估算值的50%以上,水库直接测量值占总估算值的50%以上。此外,人工智能作为一种估计技术的贡献不到6%。结论:最后,开展研究的世界区域呈比例分布,科学文献分析表明水电水库温室气体估算方法具有通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Suma de Negocios
Suma de Negocios BUSINESS-
CiteScore
0.80
自引率
0.00%
发文量
5
审稿时长
8 weeks
期刊最新文献
Inclusive economic growth and international trade in Peru 2000-2021 Evaluación de capacidades de investigación en un grupo de investigación: estudio de caso La confianza cognitiva como antecedente del intercambio de conocimiento en equipos de tecnología Participación de mujeres de Cundinamarca en escenarios políticos, de empleabilidad y emprendimiento The effect of relationship banking on SMEs’ credit access conditions: Empirical evidence from Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1