{"title":"A phase-field study on a eutectic high-entropy alloy during solidification","authors":"B. Sagar, K. Biswas, R. Mukherjee","doi":"10.1080/09500839.2021.1877366","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the present work, we adopt a computational approach to study the evolution of microstructure during solidification of a Ti-Fe-Co-Ni-Cu multi-component alloy system by regarding it as a Ti-(Cu, Ni)-(Fe, Co) pseudo-ternary-alloy system. The as-cast alloy has a eutectic morphology with lamellar structure between (Cu)SS and a Laves phase. A Kim-Kim-Suzuki (KKS) phase-field model for eutectic solidification is implemented for this multi-component alloy system using a MOOSE finite element framework. The model is implemented for different scenarios, which include the simulation of microstructures at eutectic temperature and for small degrees of undercoolings (ΔT = 2°C, 5°C, 8°C, 10°C). Analysis of the microstructure evolution reveals that an increase in undercooling leads to a higher growth velocity and a larger volume fraction of solid phases. GRAPHICAL ABSTRACT","PeriodicalId":19860,"journal":{"name":"Philosophical Magazine Letters","volume":"101 1","pages":"160 - 172"},"PeriodicalIF":1.2000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09500839.2021.1877366","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Magazine Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09500839.2021.1877366","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT In the present work, we adopt a computational approach to study the evolution of microstructure during solidification of a Ti-Fe-Co-Ni-Cu multi-component alloy system by regarding it as a Ti-(Cu, Ni)-(Fe, Co) pseudo-ternary-alloy system. The as-cast alloy has a eutectic morphology with lamellar structure between (Cu)SS and a Laves phase. A Kim-Kim-Suzuki (KKS) phase-field model for eutectic solidification is implemented for this multi-component alloy system using a MOOSE finite element framework. The model is implemented for different scenarios, which include the simulation of microstructures at eutectic temperature and for small degrees of undercoolings (ΔT = 2°C, 5°C, 8°C, 10°C). Analysis of the microstructure evolution reveals that an increase in undercooling leads to a higher growth velocity and a larger volume fraction of solid phases. GRAPHICAL ABSTRACT
期刊介绍:
Philosophical Magazine Letters is the rapid communications part of the highly respected Philosophical Magazine, which was first published in 1798. Its Editors consider for publication short and timely contributions in the field of condensed matter describing original results, theories and concepts relating to the structure and properties of crystalline materials, ceramics, polymers, glasses, amorphous films, composites and soft matter. Articles emphasizing experimental, theoretical and modelling studies on solids, especially those that interpret behaviour on a microscopic, atomic or electronic scale, are particularly appropriate.
Manuscripts are considered on the strict condition that they have been submitted only to Philosophical Magazine Letters , that they have not been published already, and that they are not under consideration for publication elsewhere.