A two-minute assay for electronic quantification of antibodies in saliva enabled through a reusable microfluidic multi-frequency impedance cytometer and machine learning analysis
{"title":"A two-minute assay for electronic quantification of antibodies in saliva enabled through a reusable microfluidic multi-frequency impedance cytometer and machine learning analysis","authors":"Zhongtian Lin, Jianye Sui, Mehdi Javanmard","doi":"10.1007/s10544-023-00647-1","DOIUrl":null,"url":null,"abstract":"<div><p>The use of saliva as a diagnostic fluid has always been appealing due to the ability for rapid and non-invasive sampling for monitoring health status and the onset and progression of disease and treatment progress. Saliva is rich in protein biomarkers and provides a wealth of information for diagnosis and prognosis of various disease conditions. Portable electronic tools which rapidly monitor protein biomarkers would facilitate point-of-care diagnosis and monitoring of various health conditions. For example, the detection of antibodies in saliva can enable rapid diagnosis and tracking disease pathogenesis of various auto-immune diseases like sepsis. Here, we present a novel method involving immuno-capture of proteins on antibody coated beads and electrical detection of dielectric properties of the beads. The changes in electrical properties of a bead when capturing proteins are extremely complex and difficult to model physically in an accurate manner. The ability to measure impedance of thousands of beads at multiple frequencies, however, allows for a data-driven approach for protein quantification. By moving from a physics driven approach to a data driven approach, we have developed, for the first time ever to the best of our knowledge, an electronic assay using a reusable microfluidic impedance cytometer chip in conjunction with supervised machine learning to quantifying immunoglobulins G (IgG) and immunoglobulins A (IgA) in saliva within two minutes.\n</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"25 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-023-00647-1.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00647-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2
Abstract
The use of saliva as a diagnostic fluid has always been appealing due to the ability for rapid and non-invasive sampling for monitoring health status and the onset and progression of disease and treatment progress. Saliva is rich in protein biomarkers and provides a wealth of information for diagnosis and prognosis of various disease conditions. Portable electronic tools which rapidly monitor protein biomarkers would facilitate point-of-care diagnosis and monitoring of various health conditions. For example, the detection of antibodies in saliva can enable rapid diagnosis and tracking disease pathogenesis of various auto-immune diseases like sepsis. Here, we present a novel method involving immuno-capture of proteins on antibody coated beads and electrical detection of dielectric properties of the beads. The changes in electrical properties of a bead when capturing proteins are extremely complex and difficult to model physically in an accurate manner. The ability to measure impedance of thousands of beads at multiple frequencies, however, allows for a data-driven approach for protein quantification. By moving from a physics driven approach to a data driven approach, we have developed, for the first time ever to the best of our knowledge, an electronic assay using a reusable microfluidic impedance cytometer chip in conjunction with supervised machine learning to quantifying immunoglobulins G (IgG) and immunoglobulins A (IgA) in saliva within two minutes.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.