{"title":"A Concept for Three-Dimensional Particle Metrology Based on Scanning Electron Microscopy and Structure-from-Motion Photogrammetry.","authors":"Vipin N Tondare","doi":"10.6028/jres.125.014","DOIUrl":null,"url":null,"abstract":"<p><p>Scanning electron microscopy (SEM) has been frequently used for size and shape measurements of particles. SEM images offer two-dimensional (2D) information about a particle's lateral dimensions. Unfortunately, information about the particle's three-dimensional (3D) size and shape remains unavailable. To resolve this issue, I propose a new concept in SEM: 3D particle metrology obtained by applying structure-from-motion (SfM) algorithms to multiple rotational SEM images of particles deposited onto a cylindrical substrate to generate a 3D model from which size and shape information can be extracted. Particles can have any size that is suitable for SEM imaging. SEM images of the sample can be acquired from 0° to 360° using a rotational-tip SEM substage. Here, I will discuss the concept and, for clarity, illustrate it with aquarium gravel particles that are glued onto a craft roll and imaged optically before generating the 3D model of that handmade craft. Future work will include the experimental SEM realization, as well as further development of the SfM algorithms. In my view, this proposed concept may become an integral part of SEM-based particle metrology.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"125014"},"PeriodicalIF":17.7000,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9017872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.125.014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Scanning electron microscopy (SEM) has been frequently used for size and shape measurements of particles. SEM images offer two-dimensional (2D) information about a particle's lateral dimensions. Unfortunately, information about the particle's three-dimensional (3D) size and shape remains unavailable. To resolve this issue, I propose a new concept in SEM: 3D particle metrology obtained by applying structure-from-motion (SfM) algorithms to multiple rotational SEM images of particles deposited onto a cylindrical substrate to generate a 3D model from which size and shape information can be extracted. Particles can have any size that is suitable for SEM imaging. SEM images of the sample can be acquired from 0° to 360° using a rotational-tip SEM substage. Here, I will discuss the concept and, for clarity, illustrate it with aquarium gravel particles that are glued onto a craft roll and imaged optically before generating the 3D model of that handmade craft. Future work will include the experimental SEM realization, as well as further development of the SfM algorithms. In my view, this proposed concept may become an integral part of SEM-based particle metrology.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.