{"title":"Likelihood-Based Inference for the Finite Population Mean with Post-Stratification Information Under Non-Ignorable Non-Response","authors":"Sahar Z. Zangeneh, Roderick J. Little","doi":"10.1111/insr.12527","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We describe models and likelihood-based estimation of the finite population mean for a survey subject to unit non-response, when post-stratification information is available from external sources. A feature of the models is that they do not require the assumption that the data are missing at random (MAR). As a result, the proposed models provide estimates under weaker assumptions than those required in the absence of post-stratification information, thus allowing more robust inferences. In particular, we describe models for estimation of the finite population mean of a survey outcome with categorical covariates and externally observed categorical post-stratifiers. We compare inferences from the proposed method with existing design-based estimators via simulations. We apply our methods to school-level data from California Department of Education to estimate the mean academic performance index (API) score in years 1999 and 2000. We end with a discussion.</p>\n </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"90 S1","pages":"S17-S36"},"PeriodicalIF":1.7000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12527","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
We describe models and likelihood-based estimation of the finite population mean for a survey subject to unit non-response, when post-stratification information is available from external sources. A feature of the models is that they do not require the assumption that the data are missing at random (MAR). As a result, the proposed models provide estimates under weaker assumptions than those required in the absence of post-stratification information, thus allowing more robust inferences. In particular, we describe models for estimation of the finite population mean of a survey outcome with categorical covariates and externally observed categorical post-stratifiers. We compare inferences from the proposed method with existing design-based estimators via simulations. We apply our methods to school-level data from California Department of Education to estimate the mean academic performance index (API) score in years 1999 and 2000. We end with a discussion.
期刊介绍:
International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.