Oxygen-Containing Nanoclusters on the Surface of Pt-Electrodes and Oxygen Reduction Reaction in Alkaline Medium

IF 2.3 Q3 ELECTROCHEMISTRY International journal of electrochemistry Pub Date : 2018-06-04 DOI:10.1155/2018/7164578
A. M. Trunov
{"title":"Oxygen-Containing Nanoclusters on the Surface of Pt-Electrodes and Oxygen Reduction Reaction in Alkaline Medium","authors":"A. M. Trunov","doi":"10.1155/2018/7164578","DOIUrl":null,"url":null,"abstract":"Analysis of the role of oxygen-containing nanoclusters in oxygen reduction reaction (ORR) on Pt-electrodes in alkaline media is provided on the basis of the concept of electrochemical processes with slowed stage of consecutive heterogeneous chemical reaction (ConHCR). Under the ConHCR concept, the main factor determining the ORR characteristics is energetic inhomogeneity of electrode surface (EIES) according to Temkin. A new concept, according to which EIES is determined by the Gibbs energy of formation of oxygen-containing surface structures with inclusions of surface defects of the platinum crystal structure, Pts,d, is formulated. A correlation between the level of EIES of Pt-electrodes and packing density of Pts,d atoms on the surface of Pt(hkl) monocrystals is determined. The concept, according to which the stationary potential of ORR process is considered as a “mixed potential” of two reactions (electrochemical reduction of surface atom PtIIs,d and consecutive oxidation of PtIs,d by molecular oxygen), is substantiated. It is proposed that the formation of surface nanocluster transition state [⁎(OO)PtIIs,d(OH)] defines the rate of the entire ORR process on Pt-electrodes in alkaline media.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2018-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/7164578","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/7164578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

Abstract

Analysis of the role of oxygen-containing nanoclusters in oxygen reduction reaction (ORR) on Pt-electrodes in alkaline media is provided on the basis of the concept of electrochemical processes with slowed stage of consecutive heterogeneous chemical reaction (ConHCR). Under the ConHCR concept, the main factor determining the ORR characteristics is energetic inhomogeneity of electrode surface (EIES) according to Temkin. A new concept, according to which EIES is determined by the Gibbs energy of formation of oxygen-containing surface structures with inclusions of surface defects of the platinum crystal structure, Pts,d, is formulated. A correlation between the level of EIES of Pt-electrodes and packing density of Pts,d atoms on the surface of Pt(hkl) monocrystals is determined. The concept, according to which the stationary potential of ORR process is considered as a “mixed potential” of two reactions (electrochemical reduction of surface atom PtIIs,d and consecutive oxidation of PtIs,d by molecular oxygen), is substantiated. It is proposed that the formation of surface nanocluster transition state [⁎(OO)PtIIs,d(OH)] defines the rate of the entire ORR process on Pt-electrodes in alkaline media.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pt电极表面含氧纳米团簇及其在碱性介质中的氧还原反应
基于连续非均相化学反应(ConHCR)减缓阶段的电化学过程的概念,分析了含氧纳米团簇在碱性介质中Pt电极上的氧还原反应(ORR)中的作用。根据Temkin的观点,在ConHCR概念下,决定ORR特性的主要因素是电极表面的能量不均匀性。提出了一个新的概念,根据该概念,EIES由含氧表面结构形成的吉布斯能确定,其中包含铂晶体结构的表面缺陷,Pts,d。测定了Pt电极的EIES水平与Pt(hkl)单晶表面Pts、d原子的堆积密度之间的相关性。ORR过程的固定电位被认为是两个反应(表面原子PtIIs,d的电化学还原和PtIs,d被分子氧连续氧化)的“混合电位”,这一概念得到了证实。提出表面纳米团簇过渡态[(OO)PtIIs,d(OH)]的形成定义了在碱性介质中Pt电极上整个ORR过程的速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
期刊最新文献
Effect of Surface Composition on Electrochemical Oxidation Reaction of Carbon Monoxide and Ethanol of PtxRh1−x Solid Solution Electrodes Development and Characterization of a New Solid Polymer Electrolyte for Supercapacitor Device Size-Dependent Chlorinated Nitrogen-Doped Carbon Nanotubes: Their Use as Electrochemical Detectors for Catechol and Resorcinol Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries Electrooxidation and Development of a Highly Sensitive Electrochemical Probe for Trace Determination of the Steroid 11-Desoxycorticosterone Drug Residues in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1