Kernel Estimation of Mathai-Haubold Entropy and Residual Mathai-Haubold Entropy Functions under α-Mixing Dependence Condition

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2021-06-07 DOI:10.1080/01966324.2021.1935366
R. Maya, M. Irshad
{"title":"Kernel Estimation of Mathai-Haubold Entropy and Residual Mathai-Haubold Entropy Functions under α-Mixing Dependence Condition","authors":"R. Maya, M. Irshad","doi":"10.1080/01966324.2021.1935366","DOIUrl":null,"url":null,"abstract":"Abstract Mathai and Haubold introduced a new generalized entropy namely Mathai-Haubold entropy and Dar and Al-Zahrani proposed the Mathai-Haubold entropy for the residual life time and called it as residual Mathai-Haubold entropy. In the present paper, we propose nonparametric estimators for the Mathai-Haubold entropy and the residual Mathai-Haubold entropy where the observations under consideration are exhibiting α-mixing (strong mixing) dependence condition. Asymptotic properties of the estimators are established under suitable regular conditions. A Monte Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error. The methods are illustrated using a real data set.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"41 1","pages":"148 - 159"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1935366","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1935366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Mathai and Haubold introduced a new generalized entropy namely Mathai-Haubold entropy and Dar and Al-Zahrani proposed the Mathai-Haubold entropy for the residual life time and called it as residual Mathai-Haubold entropy. In the present paper, we propose nonparametric estimators for the Mathai-Haubold entropy and the residual Mathai-Haubold entropy where the observations under consideration are exhibiting α-mixing (strong mixing) dependence condition. Asymptotic properties of the estimators are established under suitable regular conditions. A Monte Carlo simulation study is carried out to compare the performance of the estimators using the mean squared error. The methods are illustrated using a real data set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
α-混合相关条件下Mathai-Haubold熵和残差Mathai-Haubold熵函数的核估计
摘要Mathai和Haubold引入了一种新的广义熵,即Mathai Haubold熵,Dar和Al-Zahrani提出了剩余寿命的Mathai Haobold熵,并称之为剩余Mathai Haub熵。在本文中,我们提出了Mathai-Haubold熵和残差Mathai-Houbold熵的非参数估计,其中所考虑的观测值表现出α-混合(强混合)依赖条件。在适当的正则条件下,建立了估计量的渐近性质。进行了蒙特卡罗模拟研究,以比较使用均方误差的估计器的性能。使用实际数据集对这些方法进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1